Self-Supervision

Saurabh Gupta

Is semantic supervision necessary to learn good representations?

- Manual labeling doesn't scale, suffers from biases
- Plenty of unlabeled visual data already, and growing really fast
- And subject of the Gelato Bet:
- If, by the first day of autumn (Sept 23) of 2015, a method will exist that can match or beat the performance of R-CNN on Pascal VOC detection, without the use of any extra, human annotations (e.g. ImageNet) as pre-training, Mr. Malik promises to buy Mr. Efros one (1) gelato (2 scoops: one chocolate, one vanilla).

The Transformer: Transfer Learning

"ImageNet Moment for Natural Language Processing"

Pretraining:

Download a lot of text from the internet

Train a giant Transformer model for language modeling

Finetuning:

Fine-tune the Transformer on your own NLP task

Devlin et al, "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding", EMNLP 2018

The Transformer: Transfer Learning

Devlin et al, "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding", EMNLP 2018

The Transformer: Transfer Learning

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERTBASE	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
BERTLARGE	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

Table 1: GLUE Test results, scored by the evaluation server (https://gluebenchmark.com/leaderboard). The number below each task denotes the number of training examples. The "Average" column is slightly different than the official GLUE score, since we exclude the problematic WNLI set.⁸ BERT and OpenAI GPT are single-model, single task. F1 scores are reported for QQP and MRPC, Spearman correlations are reported for STS-B, and accuracy scores are reported for the other tasks. We exclude entries that use BERT as one of their components.

Pre-train representations on a pre-text task

E.g. Colorization

After pre-training, use representation for down-stream tasks. Many other possibilities,

Spatial relationship between pair of patches

- Predict sound / frame ordering in a video
- Encourage two augmentations of same image to be closer to each other than to another image
- Predict hidden image patches from context

<u>Split-Brain Autoencoders: Unsupervised Learning by Cross-Channel Prediction</u>, Zhang et al. CVPR 2017 <u>Context as Supervisory Signal: Discovering Objects with Predictable Context</u>, Doersch et al. ICCV 2015

Contrastive Learning

- Encourage two augmentations of an image to be close.
- Using a contrastive loss:

$$\ell_{i,j} = -\log \frac{\exp(\sin(\boldsymbol{z}_i, \boldsymbol{z}_j)/\tau)}{\sum_{k=1}^{2N} \mathbb{1}_{[k \neq i]} \exp(\sin(\boldsymbol{z}_i, \boldsymbol{z}_k)/\tau)}$$

A Simple Framework for Contrastive Learning of Visual Representations, Chen et al. ICML 2020 See also: Momentum Contrast for Unsupervised Visual Representation Learning, He et al. CVPR 2020

Augmentations

(f) Rotate {90°, 180°, 270°}

(g) Cutout

(h) Gaussian noise

(i) Gaussian blur

(j) Sobel filtering

A Simple Framework for Contrastive Learning of Visual Representations, Chen et al. ICML 2020

Results

A Simple Framework for Contrastive Learning of Visual Representations, Chen et al. ICML 2020

Masked Auto-Encoders

- Mask out image patches, predict masked patches
 from visible patches.
- Pre-train encoder & decoder.
- Use encoder as an image representation.

Better than semantic supervision on ImageNet 1K!

		AP ^{box}		AP ^{mask}	
method	pre-train data	ViT-B	ViT-L	ViT-B	ViT-L
supervised	IN1K w/ labels	47.9	49.3	42.9	43.9
MoCo v3	IN1K	47.9	49.3	42.7	44.0
BEiT	IN1K+DALLE	49.8	53.3	44.4	47.1
MAE	IN1K	50.3	53.3	44.9	47.2

Table 4. **COCO object detection and segmentation** using a ViT Mask R-CNN baseline. All entries are based on our implementation. Self-supervised entries use IN1K data *without* labels. Mask AP follows a similar trend as box AP.

method	pre-train data	ViT-B	ViT-L
supervised	IN1K w/ labels	47.4	49.9
MoCo v3	IN1K	47.3	49.1
BEiT	IN1K+DALLE	47.1	53.3
MAE	IN1K	48.1	53.6

Table 5. **ADE20K semantic segmentation** (mIoU) using Uper-Net. BEiT results are reproduced using the official code. Other entries are based on our implementation. Self-supervised entries use IN1K data *without* labels.

dataset	ViT-B	ViT-L	ViT-H	ViT-H ₄₄₈	prev best
iNat 2017	70.5	75.7	79.3	83.4	75.4 [55]
iNat 2018	75.4	80.1	83.0	86.8	81.2 [54]
iNat 2019	80.5	83.4	85.7	88.3	84.1 [54]
Places205	63.9	65.8	65.9	66.8	66.0 [19]†
Places365	57.9	59.4	59.8	60.3	58.0 [40] ‡

Table 6. **Transfer learning accuracy on classification datasets**, using MAE pre-trained on IN1K and then fine-tuned. We provide system-level comparisons with the previous best results. [†]: pre-trained on 1 billion images. [‡]: pre-trained on 3.5 billion images.

Improves performance on ImageNet itself

Figure 8. MAE pre-training vs. supervised pre-training, evaluated by fine-tuning in ImageNet-1K (224 size). We compare with the original ViT results [16] trained in IN1K or JFT300M.

Masked Autoencoders Are Scalable Vision Learners, He et al. CVPR 2022

Better than past self-supervision approaches

method	pre-train data	ViT-B	ViT-L	ViT-H	ViT-H ₄₄₈
scratch, our impl.	-	82.3	82.6	83.1	-
DINO [5]	IN1K	82.8	-	-	-
MoCo v3 [9]	IN1K	83.2	84.1	-	-
BEiT [2]	IN1K+DALLE	83.2	85.2	-	-
MAE	IN1K	83.6	85.9	86.9	87.8

Masked Autoencoders Are Scalable Vision Learners, He et al. CVPR 2022

Ablations

Need high masking ratio for good learning. NLP models use 15-20% masking ratio.

case	ft	lin	FLOPs
encoder w/ [M]	84.2	59.6	3.3×
encoder w/o [M]	84.9	73.5	$1 \times$

Faster and better to not input masked out patches to encoder

case	ft	lin
pixel (w/o norm)	84.9	73.5
pixel (w/ norm)	85.4	73.9
PCA	84.6	72.3
dVAE token	85.3	71.6

Normalized pixels are a better target than discrete tokens / PCA coefficients

Masked Autoencoders Are Scalable Vision Learners, He et al. CVPR 2022

I. Early vision

Basic image formation and processing

* =

Linear filtering Edge detection

Cameras and sensors Light and color

Feature extraction

Optical flow

II. "Mid-level vision"

Fitting and grouping

Fitting: Least squares Voting methods Alignment

III. Multi-view geometry

Epipolar geometry

Драконь, видимый подъ различными углями зрѣнія По граворъ на мъле нат "Oculus artificialis telediopericus" Цана. 1702 года.

Structure from motion

Two-view stereo

Multi-view stereo

IV. Recognition

Basic classification

Object detection

Deep learning

Segmentation

V. Additional Topics (time permitting)

Bias and Ethical Considerations

What's next?

- Machine Learning (CS 446)
- Applied Machine Learning (CS 441)
- Deep Learning for Computer Vision (CS 444)
- Advanced Classes:
 - <u>Robot Perception</u> (Shenlong)
 - <u>3D Vision (Derek)</u>
 - <u>Robot Learning</u> (Saurabh, Yunzhu)
 - <u>Autonomous Vehicles</u> (DAF)
 - <u>Learning to Learn</u> (Yuxiong)
 - Efficient & Predictive Vision (Lynna)
 - <u>Meta-Vision</u> (Lana)
 - <u>Deep Generative and Dynamical Models</u> (Arindam)
 - <u>Generative Al Models</u> (Lav)