Robotics Review

Saurabh Gupta

Robotic Tasks

Manipulation

Typical Robotics Pipeline

Typical Robotics Pipeline

Manipulation

Robot Navigation

300 feet North, 400 feet East"
"Go Find a Chair"
Robot with a first person camera
Dropped into a novel environment

Observations

$\rightarrow \mathrm{S}_{\text {Ftimation }}^{\text {State }}$
Planning $\rightarrow \begin{gathered}\text { Low-level } \\ \text { Controller }\end{gathered}$
Control

Planning

Observed Images

Hartley and Zisserman. 2000. Multiple View Geometry in Computer Vision
Thrun, Burgard, Fox. 2005. Probabilistic Robotics
Canny. 1988. The complexity of robot motion planning. Kavraki et al. RAI 996. Probabilistic roadmaps for path planning in high-dimensional configuration spaces. Lavalle and Kuffner. 2000. Rapidly-exploring random trees: Progress and prospects.

Video Credits: Mur-Artal et al., Palmieri et al.

Typical Robotics Pipeline

Observed Images

Observed Images

6DOF Pose

Geometric or Semantic Maps

Typical Robotics Pipeline

Understand how to move a robot

Video from Deepak Pathak.

Terminology

- Link
- Joint
- End Effector
- Base
- Sensors

Spaces

Work Space

Configuration Space

Task Space

Configuration Space

obstacles \rightarrow configuration space obstacles

Workspace
(2 DOF: translation only, no rotation)

Configuration Space

Configuration Space

Another Example

How to move your robot?

I.Task space to Configuration space

Initial
configuration

Configuration Space to Task Space

Forward Kinematics

Configuration Space to Task Space

Forward Kinematics

Slide from Dhiraj Gandhi.

Configuration Space to Task Space

Forward Kinematics

Maps configuration space to work space

$$
\begin{aligned}
& T=T_{1}^{0}\left(\theta_{1}\right) T_{2}^{1}\left(\theta_{2}\right) \ldots \quad T_{n-1}^{n-2}\left(\theta_{n}\right) \quad T_{n}^{n-1}\left(\theta_{n}\right) \\
& \begin{array}{l}
=\left[\begin{array}{ccc|c}
{\left[\begin{array}{ccc}
r_{11} & r_{21} & r_{31} \\
r_{12} & r_{22} & r_{32} \\
r_{13} & r_{23} & r_{33}
\end{array}\right.} & \left.\begin{array}{cc}
\Delta x \\
\Delta y \\
\Delta z \\
\hline 0 & 0
\end{array}\right] & 1 \\
\hline f\left(\theta_{1}, \theta_{2}, \ldots, \theta_{n-1}, \theta_{n}\right)
\end{array}\right]
\end{array}
\end{aligned}
$$

Task Space to Configuration Space

Numerical IK

Solve for θ_{d} in:

$$
x_{d}-f\left(\theta_{d}\right)=0
$$

Analytical IK

- Robot Specific
- Fast

$$
x=f(\theta)
$$

- Characterize the solution space

Maps configuration
space to work space

Find configuration(s) that map to a given work space point

Task Space to Configuration Space

Analytical Inverse Kinematics

How to move your robot?

I.Task space to Configuration space

How to move your robot?

I.Task space to Configuration space
2. Configuration space trajectory

Path Planning

Path Planning

I. Complete Methods
2. Grid Methods
3. Sampling Methods
4. Potential Fields
5. Trajectory Optimization

Probabilistic Roadmaps

Probabilistic Roadmaps

Randomly Sample Configurations

Probabilistic Roadmaps

Randomly Sample Configurations

Probabilistic Roadmaps

Test Sampled Configurations for Collisions

Probabilistic Roadmaps

The collision-free configurations are retained as milestones

Probabilistic Roadmaps

Each milestone is linked by straight paths to its nearest neighbors

Probabilistic Roadmaps

Paths that undergo collisions are removed

Probabilistic Roadmaps

The collision-free links are retained as local paths to form the PRM

Slide from Pieter Abbeel.

Probabilistic Roadmaps

The start and goal configurations are included as milestones

Slide from Pieter Abbeel.

Probabilistic Roadmaps

The PRM is searched for a path from s to g

Slide from Pieter Abbeel.

Probabilistic Roadmaps

Challenging to link milestones.

Probabilistic Roadmaps

Challenging to link milestones.
Collision checking can be slow.

All straight line paths may not be feasible, or a good measure of distance between states.

Rapidly Exploring Random Trees (RRTs)

Kinodynamic planning
Build up a tree through generating "next states" in the tree by executing random controls.

Rapidly Exploring Random Trees (RRTs)

Build up a tree through generating "next states" in the tree by executing random controls.

```
GENERATE_RRT( }\mp@subsup{x}{init}{},K,\Deltat
    \mathcal{T}.init ( ( }\mp@subsup{x}{init}{*})
    2 for }k=1\mathrm{ to }K\mathrm{ do
3 
4 
5 u\leftarrowSELECT_INPUT( ( }\mp@subsup{x}{\mathrm{ rand}}{},\mp@subsup{x}{near}{})\mathrm{ ;
6 }\quad\mp@subsup{x}{new}{}\leftarrow\mathrm{ NEW_STATE ( }\mp@subsup{x}{near}{},u,\Deltat)\mathrm{ ;
7 T.add_vertex (x (rew );
8 T.add_edge( }\mp@subsup{x}{\mathrm{ near }}{},\mp@subsup{x}{new}{},u)
9 Return \mathcal{T}
```

SELECT_INPUT($\mathrm{x}_{\text {rand }}, \mathrm{X}_{\text {near }}$)

- Two point boundary value problem
- If too hard to solve, often just select best out of a set of control sequences. This set could be random, or some well chosen set of primitives.

Rapidly Exploring Random Trees (RRTs)

Build up a tree through generating "next states" in the tree by executing random controls.

Rapidly Exploring Random Trees (RRTs)

Build up a tree through generating "next states" in the tree by executing random controls.

How to move your robot?

I.Task space to Configuration space
2. Configuration space trajectory

How to move your robot?

I.Task space to Configuration space
2. Configuration space trajectory

3.Trajectory execution

Initial
Desired
configuration configuration

Trajectory Execution

Dynamically feasible trajectory $x_{t}^{\text {ref }}$ from planner

What control commands should I apply in order to get the robot to robustly track this trajectory?

Robot state $x_{t} \quad$ Robot location, or joint angles.
Control sequence u_{t}
Velocities, torques.
Dynamics function $\quad x_{t+1}=f\left(x_{t}, u_{t}\right)$ State evolution as we apply control.
Cost function $\sum_{t}\left\|x_{t}-x_{t}^{r e f}\right\|$
Low-level control can be formulated as an optimization problem.

Trajectory Execution

 Feedback Control

Low-level Control

Simplifying assumptions:
Linear dynamics, quadratic cost.

Linear Quadratic Regulator

Exactly solved using dynamic programming.

The LQR setting assumes a linear dynamical system:

$$
x_{t+1}=A x_{t}+B u_{t}
$$

x_{t} : state at time t
u_{t} : input at time t
It assumes a quadratic cost function:

$$
g\left(x_{t}, u_{t}\right)=x_{t}^{\top} Q x_{t}+u_{t}^{\top} R u_{t}
$$

with $Q \succ 0, R \succ 0$.
For a square matrix X we have $X \succ 0$ if and only if for all vectors z we have $z^{\top} X z>0$. Hence there is a non-zero cost for any state different from the all-zeros state, and any input different from the all-zeros input.

Linear Quadratic Regulator

Cost if the system is in state \times,

$$
J_{i}(x)
$$

and we have i steps to go.

Cost if the system is in state \times,

$$
J_{i+1}(x)
$$

$=\min _{u} x^{T} Q x+u^{T} R u+J_{i}(A x+B u)$

Linear Quadratic Regulator

$$
J_{i+1}(x) \leftarrow \min _{u}\left[x^{\top} Q x+u^{\top} R u+J_{i}(A x+B u)\right]
$$

Initialize $J_{0}(x)=x^{\top} P_{0} x$.

$$
\begin{align*}
J_{1}(x) & =\min _{u}\left[x^{\top} Q x+u^{\top} R u+J_{0}(A x+B u)\right] \\
& =\min _{u}\left[x^{\top} Q x+u^{\top} R u+(A x+B u)^{\top} P_{0}(A x+B u)\right] \tag{1}
\end{align*}
$$

To find the minimum over u, we set the gradient w.r.t. u equal to zero:

$$
\begin{align*}
& \quad \nabla_{u}[\ldots]=2 R u+2 B^{\top} P_{0}(A x+B u)=0, \\
& \text { hence: } u=-\left(R+B^{\top} P_{0} B\right)^{-1} B^{\top} P_{0} A x \tag{2}
\end{align*}
$$

(2) into (1): $J_{1}(x)=x^{\top} P_{1} x$

$$
\text { for: } \begin{aligned}
P_{1} & =Q+K_{1}^{\top} R K_{1}+\left(A+B K_{1}\right)^{\top} P_{0}\left(A+B K_{1}\right) \\
K_{1} & =-\left(R+B^{\top} P_{0} B\right)^{-1} B^{\top} P_{0} A .
\end{aligned}
$$

Linear Quadratic Regulator

In summary:

$$
\begin{aligned}
& \begin{array}{l}
J_{0}(x)=x^{\top} P_{0} x \\
x_{t+1}=A x_{t}+B u_{t} \\
g(x, u)
\end{array}=u^{\top} R u+x^{\top} Q x \\
& \begin{aligned}
J_{1}(x) & =x^{\top} P_{1} x \\
\text { for: } P_{1} & =Q+K_{1}^{\top} R K_{1}+\left(A+B K_{1}\right)^{\top} P_{0}\left(A+B K_{1}\right) \\
K_{1} & =-\left(R+B^{\top} P_{0} B\right)^{-1} B^{\top} P_{0} A .
\end{aligned}
\end{aligned}
$$

$J_{1}(x)$ is quadratic, just like $J_{0}(x)$.
Update is the same for all times and can be done in closed form for this particular continuous state-space system and cost!

$$
\begin{aligned}
J_{2}(x) & =x^{\top} P_{2} x \\
\text { for: } P_{2} & =Q+K_{2}^{\top} R K_{2}+\left(A+B K_{2}\right)^{\top} P_{1}\left(A+B K_{2}\right) \\
K_{2} & =-\left(R+B^{\top} P_{1} B\right)^{-1} B^{\top} P_{1} A .
\end{aligned}
$$

Linear Quadratic Regulator

Set $P_{0}=0$.
for $i=1,2,3, \ldots$

$$
\begin{aligned}
K_{i} & =-\left(R+B^{\top} P_{i-1} B\right)^{-1} B^{\top} P_{i-1} A \\
P_{i} & =Q+K_{i}^{\top} R K_{i}+\left(A+B K_{i}\right)^{\top} P_{i-1}\left(A+B K_{i}\right)
\end{aligned}
$$

The optimal policy for a i-step horizon is given by:

$$
\pi(x)=K_{i} x
$$

The cost-to-go function for a i-step horizon is given by:

$$
J_{i}(x)=x^{\top} P_{i} x
$$

Linear Quadratic Regulator

Extensions which make it more generally applicable:

- Affine systems System with stochasticity
- Regulation around non-zero fixed point for non-linear systems
- Penalization for change in control inputs
- Linear time varying (LTV) systems
- Trajectory following for non-linear systems

Linear Quadratic Regulator

How to move your robot?

I.Task space to Configuration space
2. Configuration space trajectory
3. Trajectory tracking

Initial
Desired
configuration configuration

Minor Detail

Camera Calibration

Camera Calibration

Slide from Dhiraj Gandhi.

Camera Calibration

Slide from Dhiraj Gandhi.

Camera Calibration

Slide from Dhiraj Gandhi.

Camera Calibration

Good Softwares

Movelt!


```
<robot name="baxter">
    <link name="base">
    </link>
    <link name="torso">
        <visual>
            <origin rpy="0 0 0" xyz="0 0 0"/>
            <geometry>
            <mesh filename="package://baxter_description/meshes/torso/base_link.DAE'
            </geometry>
        </visual>
        <collision>
            <origin rpy="0 0 0" xyz="0 0 0"/>
            <geometry>
            <mesh filename="package://baxter_description/meshes/torso/base_link_col1
        </geometry>
        </collicion>
```


Slide from Dhiraj Gandhi.

Movelt! Example

```
target_poses = [
    {'position': np.array([0.28, 0.17, 0.22]),
        'pitch': 0.5,
        'numerical': False},
    {'position': np.array([0.28, -0.17, 0.22]),
        'pitch': 0.5,
        'roll': 0.5,
        'numerical': False}
]
robot.arm.go_home()
for pose in target_poses:
    robot.arm.set_ee_pose_pitch_roll(**pose)
    time.sleep(1)
robot.arm.go_home()
```


Robotics Review: How to move your robot?

I.Task space to Configuration space
2. Configuration space trajectory
3.Trajectory execution

Configuration Space Forward / Inverse Kinematics Motion Planning Optimal Control

Initial

Resources

Kris Hauser's Robotic Systems Book http://motion.cs.illinois.edu/RoboticSystems/

Pieter Abbeel's Advanced Robotics Course at Berkeley https://people.eecs.berkeley.edu/~pabbeel/cs287-fal9/

Howie Choset's Robotic Motion Planning Course at CMU https://www.cs.cmu.edu/~motionplanning/

