
Robotics Review

Saurabh Gupta

Robotic Tasks

Manipulation

Typical Robotics Pipeline

Observations State
Estimation Planning Low-level

Controller Control

Typical Robotics Pipeline

Observations State
Estimation Planning Low-level

Controller Control

6DOF Pose Grasp Motion
PlanningObserved Images

Manipulation

Robot Navigation

Robot with a first
person camera

Dropped into a novel
environment

Navigate
around

“Go
300 feet North,
400 feet East”

Goal

“Go Find a Chair”

Mapping

Planning
Observed Images

Path Plan

Geometric Reconstruction

Hartley and Zisserman. 2000. Multiple View Geometry
in Computer Vision

Thrun, Burgard, Fox. 2005. Probabilistic Robotics

Canny. 1988. The complexity of robot motion planning.
Kavraki et al. RA1996. Probabilistic roadmaps for path

planning in high-dimensional configuration spaces.
Lavalle and Kuffner. 2000. Rapidly-exploring random

trees: Progress and prospects.

Video Credits: Mur-Artal et al., Palmieri et al.

Observations State
Estimation Planning Low-level

Controller Control

Typical Robotics Pipeline

Observations State
Estimation Planning Low-level

Controller Control

6DOF Pose

Observed Images Geometric or Semantic Maps

Observed Images

Typical Robotics Pipeline

Observations State
Estimation Planning Low-level

Controller Control

Understand how to move a robot

Video from Deepak Pathak.

• Link

• Joint

• End Effector

• Base

• Sensors

Base

Shoulder

Upper Arm

Elbow
Block

Fore
Arm

𝜃1

𝜃2

𝜃3

𝜃4

𝜃5
𝜃6

Slide from Dhiraj Gandhi.

Terminology

Spaces

(θ1, θ2, θ3, …)
Work Space

Configuration Space

Task Space

Configuration Space=${$x$|$$xisa$pose$oftherobot}

! obstacles$" configuration$space$obstacles

Configuration$Space$(CSSpace)

Workspace Configuration$ Space

(2$DOF:$translation$only,$ no$rotation)

free$space
obstacles

Slide from Pieter Abbeel.

Configuration Space

Slide from Pieter Abbeel.

Motion$planningAnother Example

Shoulder

Elbow

Shoulder Angle

El
bo

w
 A

ng
le

1. Task space to Configuration space

2. Configuration space trajectory (dynamically feasible)

3. Trajectory tracking

How to move your robot?

(x, y, θ)

Motion$planningInitial
configuration

Base

𝜃1

𝜃2

𝜃3

𝜃4

𝜃5
𝜃6

Forward Kinematics

Configuration Space to Task Space

Slide from Dhiraj Gandhi.

𝑋

𝑌

𝜃1

𝜃2

𝑙1

𝑙2

𝑃

𝑙1cos(𝜃1) 𝑙2cos(𝜃1 + 𝜃2)+

𝑙 1s
in

(𝜃 1
)

𝑙 2s
𝑖𝑛

(𝜃 1
+

𝜃 2
)

+

𝑃𝑥 =𝑃 𝑦
=

(Px, Py, Pθ)

Forward Kinematics

Configuration Space to Task Space

Px = l1cos(θ1) + l2cos(θ1 + θ2)
Py = l2sin(θ1) + l2sin(θ1 + θ2)
Pθ = θ1 + θ2

Slide from Dhiraj Gandhi.

𝜃1

𝜃2

𝜃3

𝜃4

𝜃5
𝜃6

Forward Kinematics

Configuration Space to Task Space

Slide from Dhiraj Gandhi.

𝑋𝐴

𝑍𝐴

𝑌𝐴

𝑌𝐵

𝑋𝐵

𝑍𝐵

P

𝑇𝐴
𝐵 =

𝑟11 𝑟21
𝑟12 𝑟22

𝑟31 Δ𝑥
𝑟32 Δ𝑦

𝑟13 𝑟23

0 0
𝑟33 Δ𝑧
0 1

𝑃𝐵𝑇𝐴
𝐵

𝑃𝐴 =

Forward Kinematics

Configuration Space to Task Space

Slide from Dhiraj Gandhi.

𝑇 𝑛−1
𝑛 (𝜃𝑛)𝑇 𝑛−2

𝑛−1(𝜃𝑛) 𝑇 0
1(𝜃1) 𝑇1

2
(𝜃2)…

Forward Kinematics

Configuration Space to Task Space

Slide from Dhiraj Gandhi.

=

𝑟11 𝑟21
𝑟12 𝑟22

𝑟31 Δ𝑥
𝑟32 Δ𝑦

𝑟13 𝑟23

0 0
𝑟33 Δ𝑧
0 1

𝑓(𝜃1, 𝜃2, . . , 𝜃𝑛−1, 𝜃𝑛)

𝑇 𝑛−1
𝑛 (𝜃𝑛)𝑇 𝑛−2

𝑛−1(𝜃𝑛) 𝑇 0
1(𝜃1) 𝑇1

2
(𝜃2)…𝑇 =

Forward Kinematics

Configuration Space to Task Space

Maps configuration
space to work space

x =f(θ)=
Slide adapted from Dhiraj Gandhi.

Inverse Kinematics

Task Space to Configuration Space

Maps configuration
space to work space

Forward Kinematics

x = f(θ)

Find configuration(s) that map
to a given work space point

xd − f(θd) = 0
Solve for in:θd

Slide adapted from Dhiraj Gandhi, Modern Robotics

Analytical IK

Numerical IK

• Robot Specific
• Fast
• Characterize the solution space

𝑋

𝑌

𝑂

𝐴

𝑃

𝑃′

𝐴1

𝐴2

𝜃1

𝜃2

𝑙2

𝑙1

Analytical Inverse Kinematics

Task Space to Configuration Space

Slide from Dhiraj Gandhi.

1. Task space to Configuration space

2. Configuration space trajectory (dynamically feasible)

3. Trajectory tracking

How to move your robot?

(x, y, θ)

Motion$planningInitial
configuration

Desired
configuration

1. Task space to Configuration space

2. Configuration space trajectory

3. Trajectory tracking

How to move your robot?

(x, y, θ)

Motion$planningInitial
configuration

Desired
configuration

Path Planning

Configuration Space
With Obstacles

Goal
Config.

Feasible State
Trajectory+Initial

Config.+

Picture Credits: Palmieri et al.

Path Planning

1. Complete Methods

2. Grid Methods

3. Sampling Methods

4. Potential Fields

5. Trajectory Optimization

Slide from Pieter Abbeel.

Probabilistic$Roadmap$(PRM)
Free/feasible$spaceSpace$ℜn forbidden$ space

Probabilistic Roadmaps

Probabilistic Roadmaps

Slide from Pieter Abbeel.

Configurations$ are$sampled$by$picking$coordinatesatrandom

Probabilistic$Roadmap$(PRM)
Randomly Sample Configurations

Probabilistic Roadmaps

Slide from Pieter Abbeel.

Randomly Sample Configurations

Probabilistic$Roadmap$(PRM)
Configurations$ are$sampled$by$picking$coordinatesatrandom

Probabilistic Roadmaps

Slide from Pieter Abbeel.

Sampled$configurations$are$tested$for$collision

Probabilistic$Roadmap$(PRM)
Test Sampled Configurations for Collisions

Probabilistic Roadmaps

Slide from Pieter Abbeel.

The$collisionSfree$configurationsareretainedasmilestones

Probabilistic$Roadmap$(PRM)
The collision-free configurations are retained as milestones

Probabilistic Roadmaps

Slide from Pieter Abbeel.

Each$milestone$ is$linked$by$straight$pathstoits$nearest$neighbors

Probabilistic$Roadmap$(PRM)
Each milestone is linked by straight paths to its nearest neighbors

Probabilistic Roadmaps

Slide from Pieter Abbeel.

Each$milestone$ is$linked$by$straight$pathstoits$nearest$neighbors

Probabilistic$Roadmap$(PRM)
Paths that undergo collisions are removed

Probabilistic Roadmaps

Slide from Pieter Abbeel.

The$collisionSfree$ linksareretainedaslocal$paths to$formthePRM

Probabilistic$Roadmap$(PRM)
The collision-free links are retained as local paths to form the PRM

Probabilistic Roadmaps

Slide from Pieter Abbeel.

s

g

The$start$and$goal$configurations$ are$included$as$milestones

Probabilistic$Roadmap$(PRM)
The start and goal configurations are included as milestones

Probabilistic Roadmaps

Slide from Pieter Abbeel.

ThePRMis$searched$forapath$from$stog

s

g

Probabilistic$Roadmap$(PRM)
The PRM is searched for a path from s to g

Probabilistic Roadmaps

Slide from Pieter Abbeel.

Each$milestone$ is$linked$by$straight$pathstoits$nearest$neighbors

Probabilistic$Roadmap$(PRM)
Challenging to link milestones.

Probabilistic Roadmaps

Slide from Pieter Abbeel, Modern Robotics.

Each$milestone$ is$linked$by$straight$pathstoits$nearest$neighbors

Probabilistic$Roadmap$(PRM)

Challenging to link milestones.

Each$milestone$ is$linked$by$straight$pathstoits$nearest$neighbors

Probabilistic$Roadmap$(PRM)

Collision checking can be slow.

All straight line paths may not be feasible,
or a good measure of distance between
states.

376 10.4. Grid Methods

start goal

start

goal

Figure 10.15: (Left) A minimum-cost path for a car-like robot where each action has
identical cost, favoring a short path. (Right) A minimum-cost path where reversals
are penalized. Penalizing reversals requires a modification to Algorithm 10.2.

Since the motion planning problem is broken into two steps (path planning fol-
lowed by time scaling), the resultant motion will not be time-optimal in general.

Another approach is to plan directly in the state space. Given a state (q, q̇)
of the robot arm, let A(q, q̇) represent the set of accelerations that are feasible
on the basis of the limited joint torques. To discretize the controls, the set
A(q, q̇) is intersected with a grid of points of the form

nX

i=1

caiêi,

where c is an integer, ai > 0 is the acceleration step size in the q̈i-direction, and
êi is a unit vector in the ith direction (Figure 10.16).

As the robot moves, the acceleration set A(q, q̇) changes but the grid remains
fixed. Because of this, and assuming a fixed integration time �t at each “step”
in a motion plan, the reachable states of the robot (after any integral number of
steps) are confined to a grid in state space. To see this, consider a single joint
angle of the robot, q1, and assume for simplicity zero initial velocity, q̇1(0) = 0.
The velocity at timestep k takes the form

q̇1(k) = q̇1(k � 1) + c(k)a1�t,

where c(k) is any value in a finite set of integers. By induction, the velocity at
any timestep must be of the form a1kv�t, where kv is an integer. The position
at timestep k takes the form

q1(k) = q1(k � 1) + q̇1(k � 1)�t +
1

2
c(k)a1(�t)2.

May 2017 preprint of Modern Robotics, Lynch and Park, Cambridge U. Press, 2017. http://modernrobotics.org

Rapidly Exploring Random Trees (RRTs)

Slide from Pieter Abbeel.

Build up a tree through generating "next states" in the tree by executing
random controls.

Kinodynamic planning

Rapidly Exploring Random Trees (RRTs)

Slide from Pieter Abbeel.

Build up a tree through generating "next states" in the tree by executing
random controls.

RANDOM_STATE():.often.uniformly.at.random.over.space.with.probability.99%,.and.the.goal.

state.with.probability. 1%,.this.ensures.it.attempts.to.connect.to.goal.semiHregularly

Rapidly$exploring$Random$Tree$(RRT)

! NEAREST_NEIGHBOR(xrand,$T):$needtofind$(approximate)$
nearest$neighbor$efficiently
! KD$Trees$data$structure$(upto 20SD)$$[e.g.,$FLANN]

! Locality$Sensitive$Hashing

! SELECT_INPUT(xrand,$xnear)
! Two$point$boundary$value$problem

! Iftoohardtosolve,$often$ just$select$bestoutofasetof control$sequences.$$
Thissetcouldberandom,orsome$well$chosensetof$primitives.

RRT$Practicalities

Rapidly Exploring Random Trees (RRTs)

Slide from Pieter Abbeel.

Build up a tree through generating "next states" in the tree by executing
random controls.

Rapidly Exploring Random Trees (RRTs)
Build up a tree through generating "next states" in the tree by executing
random controls.

1. Task space to Configuration space

2. Configuration space trajectory

3. Trajectory tracking

How to move your robot?

(x, y, θ)

Motion$planningInitial
configuration

Desired
configuration

1. Task space to Configuration space

2. Configuration space trajectory
3. Trajectory execution

How to move your robot?

(x, y, θ)

Motion$planningInitial
configuration

Desired
configuration

Trajectory Execution

Dynamically feasible trajectory
from planner

What control commands should I apply in order
to get the robot to robustly track this trajectory?

∑
t

∥xt − xref
t ∥Cost function

xref
t

xt+1 = f(xt, ut)Dynamics function

utControl sequence
xtRobot state Robot location, or joint angles.

Velocities, torques.

State evolution as we apply control.

Low-level control can be formulated as an optimization problem.

Trajectory Execution

Chapter 11. Robot Control 405

dynamics of
arm and

environment
controller amplifiers

actuators
and

transmissions

sensors

desired
behavior

low
power

controls

high
power

controls

forces
and

torques

motions
and

forces

local
feedback

dynamics of
arm and

environment
controller

desired
behavior

forces
and

torques

motions
and

forces

(a)

(b)

Figure 11.1: (a) A typical robot control system. An inner control loop is used to help
the amplifier and actuator to achieve the desired force or torque. For example, a DC
motor amplifier in torque control mode may sense the current actually flowing through
the motor and implement a local controller to better match the desired current, since
the current is proportional to the torque produced by the motor. Alternatively the
motor controller may directly sense the torque by using a strain gauge on the motor’s
output gearing, and close a local torque-control loop using that feedback. (b) A
simplified model with ideal sensors and a controller block that directly produces forces
and torques. This assumes ideal behavior of the amplifier and actuator blocks in part
(a). Not shown are the disturbance forces that can be injected before the dynamics
block, or disturbance forces or motions injected after the dynamics block.

11.2 Error Dynamics

In this section we focus on the controlled dynamics of a single joint, as the
concepts generalize easily to the case of a multi-joint robot.

If the desired joint position is ✓d(t) and the actual joint position is ✓(t) then
we define the joint error to be

✓e(t) = ✓d(t) � ✓(t).

May 2017 preprint of Modern Robotics, Lynch and Park, Cambridge U. Press, 2017. http://modernrobotics.org

Feedback Control

Figure from Modern Robotics.

Low-level Control

Simplifying assumptions:
Linear dynamics, quadratic cost. Exactly solved using

dynamic programming.
⇒ Linear Quadratic Regulator

Slide from Pieter Abbeel.

Linear Quadratic Regulator

Ji(x)Cost if the system is in state x,
and we have i steps to go.

Ji+1(x)Cost if the system is in state x,
and we have i+1 steps to go.

= minu xTQx + uTRu + Ji(Ax + Bu)

Linear Quadratic Regulator

Slide from Pieter Abbeel.

Linear Quadratic Regulator

In summary:

J1(x) is quadratic, just like J0(x).

Update is the same for all times and can be done in closed form for this
particular continuous state-space system and cost!

Slide from Pieter Abbeel.

Linear Quadratic Regulator

Slide from Pieter Abbeel.

Linear Quadratic Regulator

Extensions which make it more generally applicable:
• Affine systems System with stochasticity
• Regulation around non-zero fixed point for non-linear systems
• Penalization for change in control inputs
• Linear time varying (LTV) systems
• Trajectory following for non-linear systems

Linear Quadratic Regulator

1. Task space to Configuration space

2. Configuration space trajectory
3. Trajectory tracking

How to move your robot?

(x, y, θ)

Motion$planningInitial
configuration

Desired
configuration

Minor Detail
Camera Calibration

Images from Lerrel Pinto.

B

E

𝑇𝐵
𝐶 ?

Camera Calibration

Slide from Dhiraj Gandhi.

𝑇𝐵
𝐶 ?

E

B

Camera Calibration

Slide from Dhiraj Gandhi.

B
𝑇𝐵

𝐶 ?

E

𝑋𝐵 𝑋𝐶

min
𝑇𝐵

𝐶

(𝑋𝐵 − 𝑇𝐵
𝐶 𝑋𝐶)

Camera Calibration

Slide from Dhiraj Gandhi.

min
𝑇𝐵

𝐶

𝑛

∑
𝑖=1

𝑋𝑖
𝐵 − 𝑇𝐵

𝐶 𝑋𝑖
𝐶

Camera Calibration

Slide from Dhiraj Gandhi.

Good Softwares

Slide from Dhiraj Gandhi.

MoveIt! Example

PyRobot: An Open-Source Robotics Framework for Research and Benchmarking.

1. Task space to Configuration space
2. Configuration space trajectory
3. Trajectory execution

Robotics Review: How to move your robot?

(x, y, θ)

Motion$planningInitial
configuration

Desired
configuration

Configuration Space
Forward / Inverse Kinematics

Motion Planning
Optimal Control

Pieter Abbeel's Advanced Robotics Course at Berkeley
https://people.eecs.berkeley.edu/~pabbeel/cs287-fa19/

Resources

Howie Choset's Robotic Motion Planning Course at CMU
https://www.cs.cmu.edu/~motionplanning/

Kris Hauser’s Robotic Systems Book
http://motion.cs.illinois.edu/RoboticSystems/

https://people.eecs.berkeley.edu/~pabbeel/cs287-fa19/
https://people.eecs.berkeley.edu/~pabbeel/cs287-fa19/
https://www.cs.cmu.edu/~motionplanning/
https://www.cs.cmu.edu/~motionplanning/
http://motion.cs.illinois.edu/RoboticSystems/
http://motion.cs.illinois.edu/RoboticSystems/

