
Manipulation

Saurabh Gupta

Today’s Class

• Task, and challenges in manipulation
• Discussion about the role of learning for manipulation tasks
• DexNet 2.0 Paper

Example Tasks

• Tidying up a table
• Folding laundry
• Taking out keys from pocket
• Inserting key into lock
• Cutting a potato
• Scrubbing a dish

4

be able to fetch objects from various locations in the environ-
ment. To this end, they must navigate through the environment,
perceive objects, and grasp them.

We implement navigation with state-of-the-art methods.
Cosero localizes and plans paths in a 2D occupancy grid
map of the environment ([21], [22], [23]). For 3D collision
avoidance, we integrate measurements from any 3D sensing
device, such as the tilting laser in the robot’s chest. Due to the
limited on-board computing power of our robots, we focused
on efficient and light-weight implementations.

In mobile manipulation, the robot typically estimates its
pose in reference to the walls, objects, or persons. For example,
when the robot grasps an object from a table, it first approaches
the table roughly within the reference frame of a static map.
Then, it adjusts in height and distance to the table. Finally, it
aligns itself to bring the object into the workspace of its arms.

Our robots grasp objects on horizontal surfaces like the
floor, tables, and shelves in a height range from the floor
to ca. 1 m. They carry the objects and hand them to human
users. We also developed solutions to pour-out containers,
to place objects on horizontal surfaces, to dispose objects in
containers, and to receive objects from users. We implemented
these capabilities by parametrized motion primitives and also
account for collisions during grasping motions.

A. Compliance Control

From differential inverse kinematics, we derived a method
to limit the torque of the joints depending on how much they
contribute to the achievement of the motion in task-space [24].
Our approach not only allows to adjust compliance in the null-
space of the motion, but also in the individual dimensions
of the task-space. This is very useful when only specific
dimensions in task-space shall be controlled in a compliant
way.

We applied compliant control to the opening and closing
of doors that can be moved without the handling of an
unlocking mechanism. Refrigerators or cabinets are commonly
equipped with magnetically locked doors that can be pulled
open without special manipulation of the handle. See Fig. 2
for an example. Several approaches exist to manipulate doors
when no precise articulation model is known ([25], [26]).
Our approach does not require feedback from force or tactile
sensors. Instead, the actuators are back-drivable and measure
the displacement due to external forces.

To open a door, our robot drives in front of it, detects
the door handle with the torso laser, approaches the handle,
and grasps it. The drive moves backward while the gripper
moves to a position to the side of the robot in which the
opening angle of the door is sufficiently large to approach
the open fridge or cabinet. The gripper follows the motion
of the door handle through compliance in the lateral and the
yaw directions. The robot moves backward until the gripper
reaches its target position. For closing a door, the robot has
to approach the open door leaf, grasp the handle, and move
forward while it holds the handle at its initial grasping pose
relative to the robot. When the arm is pulled away from this
pose by the constraining motion of the door leaf, the drive

(a) (b) (c)

Fig. 3. Tabletop segmentation. (a) Example setting. (b) Raw colored point
cloud from Kinect. (c) Each detected object is marked with a distinct color.

corrects for the motion to keep the handle at its initial pose
relative to the robot. The closing of the door can be detected
when the arm is pushed back towards the robot.

B. Real-Time Tabletop Segmentation

In household environments, objects are frequently located
on planar surfaces such as tables. We therefore base our object
detection pipeline on fast planar segmentation of the depth
images of the Kinect [19]. Fig. 3 shows an exemplary result for
a tabletop scene. Our approach processes depth images with a
resolution of 160×120 at frame rates of approx. 20 Hz on the
robot’s main computer. This enables our system to extract in-
formation about the objects in a scene with a very low latency
for further decision-making and planning stages. For object
identification, we utilize texture and color information [18].

Similar to Rusu et al. [27], we segment point clouds into
objects on planar surfaces. In order to process the depth
images efficiently, we combine rapid normal estimation with
fast segmentation techniques. The normal estimation method
utilizes integral images to estimate surface normals in a
fixed image neighborhood in constant time [28]. Overall, the
runtime complexity is linear in the number of pixels for which
normals are calculated. Since we search for horizontal support
planes, we find all points with vertical normals. We segment
these points into planes using RANSAC [29]. We find the
objects by clustering the measurements above the convex hull
of the points in the support plane.

C. Efficient Grasp Planning

We investigated grasp planning to enable our robots to grasp
objects that they typically encounter in RoboCup. In order to
grasp objects flexibly from shelves and in complex scenes, we
consider obstructions by obstacles [19].

(a) (b) (c)

Fig. 4. Grasp planning. (a) Object shape properties. The arrows mark the
principal axes of the object. (b) We rank feasible, collision-free grasps (red,
size prop. to score) and select the most appropriate one (large, RGB-coded).
(c) Example grasps on box-shaped objects.

Tasks

• Programmed motion
• Compliant motion
• Structured pick-and-place
• Unstructured pick-and-place
• Mechanical assembly and task

mechanics
• In-hand manipulation
• Non-prehensile manipulation
• Whole body manipulation

Towards Robotic Manipulation. Matthew Mason 2018.

• Task-oriented grasping
• Manipulation of deformable objects

• cloth, granular media

Actuation / End effector design
• Parallel jaw grippers
• Task specific end-effectors

• Eg: Suction cups, remote Center Compliance for peg insertion
• Multi-finger hands
• Soft robots

https://www.youtube.com/watch?v=Y5kZO8SSxVw

Sensing
• Over head camera / hand-in-eye camera, etc.

IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2020 1

Grasping in the Wild: Learning 6DoF Closed-Loop
Grasping from Low-Cost Demonstrations

Shuran Song1,2 Andy Zeng2 Johnny Lee2 Thomas Funkhouser2

https://graspinwild.cs.columbia.edu

Abstract—Intelligent manipulation benefits from the capacity
to flexibly control an end-effector with high degrees of freedom
(DoF) and dynamically react to the environment. However, due to
the challenges of collecting effective training data and learning
efficiently, most grasping algorithms today are limited to top-
down movements and open-loop execution. In this work, we
propose a new low-cost hardware interface for collecting grasping
demonstrations by people in diverse environments. This data
makes it possible to train a robust end-to-end 6DoF closed-
loop grasping model with reinforcement learning that transfers
to real robots. A key aspect of our grasping model is that it
uses “action-view” based rendering to simulate future states with
respect to different possible actions. By evaluating these states
using a learned value function (e.g., Q-function), our method is
able to better select corresponding actions that maximize total
rewards (i.e., grasping success). Our final grasping system is able
to achieve reliable 6DoF closed-loop grasping of novel objects
across various scene configurations, as well as in dynamic scenes
with moving objects.

Index Terms—Deep Learning in Grasping and Manipulation,
Deep Learning for Visual Perception

I. INTRODUCTION

Versatile manipulation benefits from the capacity to flexibly
control an end-effector in 3D space and dynamically react
to changes in the environment. In the case of grasping, 6
degrees of freedom (6DoF: where the gripper is free to
change in x, y, z position and in roll, pitch, yaw) closed-
loop algorithms enable robots to pick up objects from a wider
range of unstructured settings beyond tabletop scenarios: from
moving in 6DoF to retrieve diagonally positioned plates in a
dishwasher or harvest berries from a bush, to using closed-loop
visual feedback for grasping objects moving along a conveyor
belt or handed off by people. Despite the practical value of
both 6DoF control and closed-loop feedback, most data-driven
grasping algorithms today are only able to achieve one of these
capabilities. Most methods only infer top-down grasps (4Dof:
x, y, z, yaw) in simple tabletop settings [1], [2], [3], [4], or
detect grasps in 6DoF but with open-loop execution [5], [6].

One major obstacle for achieving both 6DoF and closed-
loop grasping is the challenge of acquiring effective training
data. Collecting data on real robots through self-supervised
trial and error is expensive. As the action space approaches
higher dimensions (e.g., 4DoF to 6DoF grasping) and as the
state space reaches higher diversity (e.g., images of static

1 Columbia University shurans@cs.columbia.edu
2 Google andyzeng@google.com, johnnylee@google.com,

tfunkhouser@google.com
Digital Object Identifier (DOI): see top of this page.

Fig. 1. Grasping in the wild. We developed a low-cost handheld device that
enables people to collect grasping demonstrations (top row) while carrying
out everyday tasks in diverse environments. Using these demonstrations as
training data, we show that it is possible to learn flexible 6DoF closed-loop
grasping policies that transfer to real-world robot picking systems (bottom).

scenes to dynamic scenes), the exploration search space grows
exponentially. In this large search space, the chances of stum-
bling on useful grasping trajectories through random search
becomes exponentially slim. While prior work alleviates some
of these issues by training on demonstration data collected
from human teleoperation of robots [7], these approaches
remain limited to a small range of environments that are
physically accessible for those robots.

In this work, we develop a system for collecting grasping
demonstrations in the wild by equipping a handheld grabbing
tool with an RGB-D camera mounted on its “wrist” in the
same way it would be on a real robot arm (Fig. 1). This device
(which in total costs $600) is a low-user-friction tool that
can be used by people to pick up objects while carrying out
everyday tasks real-world environments (e.g., picking up trash,
sorting dishes, etc.). During these tasks, the camera captures
RGB-D gripper-centric videos from which we recover 6DoF
grasping trajectories using classic visual tracking algorithms.
This setup provides grasping demonstration data with substan-
tially higher diversity and lower cost than prior work.

This data makes it possible to bootstrap and train a robust
end-to-end 6DoF closed-loop grasping model with reinforce-
ment learning that transfers to real robot platforms. The system
uses a deep network to model a value function that maps from
a visual observation of the state (i.e., gripper-centric images)

ar
X

iv
:1

91
2.

04
34

4v
2

 [c
s.C

V
]

17
 Ju

n
20

20

Supersizing Self-supervision: Learning to Grasp
from 50K Tries and 700 Robot Hours

Lerrel Pinto and Abhinav Gupta
The Robotics Institute, Carnegie Mellon University

(lerrelp, abhinavg)@cs.cmu.edu

Abstract— Current learning-based robot grasping ap-
proaches exploit human-labeled datasets for training the mod-
els. However, there are two problems with such a methodology:
(a) since each object can be grasped in multiple ways, manually
labeling grasp locations is not a trivial task; (b) human labeling
is biased by semantics. While there have been attempts to train
robots using trial-and-error experiments, the amount of data
used in such experiments remains substantially low and hence
makes the learner prone to over-fitting. In this paper, we take
the leap of increasing the available training data to 40 times
more than prior work, leading to a dataset size of 50K data
points collected over 700 hours of robot grasping attempts. This
allows us to train a Convolutional Neural Network (CNN) for
the task of predicting grasp locations without severe overfitting.
In our formulation, we recast the regression problem to an 18-
way binary classification over image patches. We also present
a multi-stage learning approach where a CNN trained in one
stage is used to collect hard negatives in subsequent stages.
Our experiments clearly show the benefit of using large-scale
datasets (and multi-stage training) for the task of grasping.
We also compare to several baselines and show state-of-the-art
performance on generalization to unseen objects for grasping.

I. INTRODUCTION

Consider the object shown in Fig. 1(a). How do we predict
grasp locations for this object? One approach is to fit 3D
models to these objects, or to use a 3D depth sensor, and
perform analytical 3D reasoning to predict the grasp loca-
tions [1]–[4]. However, such an approach has two drawbacks:
(a) fitting 3D models is an extremely difficult problem by
itself; but more importantly, (b) a geometry based-approach
ignores the densities and mass distribution of the object
which may be vital in predicting the grasp locations. There-
fore, a more practical approach is to use visual recognition
to predict grasp locations and configurations, since it does
not require explicit modelling of objects. For example, one
can create a grasp location training dataset for hundreds
and thousands of objects and use standard machine learning
algorithms such as CNNs [5], [6] or autoencoders [7] to
predict grasp locations in the test data. However, creating
a grasp dataset using human labeling can itself be quite
challenging for two reasons. First, most objects can be
grasped in multiple ways which makes exhaustive labeling
impossible (and hence negative data is hard to get; see
Fig. 1(b)). Second, human notions of grasping are biased by
semantics. For example, humans tend to label handles as the
grasp location for objects like cups even though they might
be graspable from several other locations and configurations.
Hence, a randomly sampled patch cannot be assumed to be

Fig. 1. We present an approach to train robot grasping using 50K trial
and error grasps. Some of the sample objects and our setup are shown in
(a). Note that each object in the dataset can be grasped in multiple ways (b)
and therefore exhaustive human labeling of this task is extremely difficult.

a negative data point, even if it was not marked as a positive
grasp location by a human. Due to these challenges, even
the biggest vision-based grasping dataset [8] has about only
1K images of objects in isolation (only one object visible
without any clutter).

In this paper, we break the mold of using manually labeled
grasp datasets for training grasp models. We believe such an
approach is not scalable. Instead, inspired by reinforcement
learning (and human experiential learning), we present a self-
supervising algorithm that learns to predict grasp locations
via trial and error. But how much training data do we need
to train high capacity models such as Convolutional Neural
Networks (CNNs) [6] to predict meaningful grasp locations
for new unseen objects? Recent approaches have tried to use

ar
X

iv
:1

50
9.

06
82

5v
1

 [c
s.L

G
]

23
 S

ep
 2

01
5

Image Source: L. Pinto, S. Song

Sensing
• Over head camera / hand-in-eye camera, etc.
• Just visual sensing may not be enough, eg: consider inserting a key in cold

Video Source: Dr. Roland Johansson

Sensing
• Over head camera / hand-in-eye camera, etc.
• Just visual sensing may not be enough, eg: consider inserting a key in cold

Video Source: Dr. Roland Johansson

Sensing
• Over head camera / hand-in-eye camera, etc.
• Just visual sensing may not be enough, eg: consider inserting a key in cold
• Tactile sensing / haptic feedback may be crucial

Estimating Object Hardness with a GelSight Touch Sensor

Wenzhen Yuan1, Mandayam A. Srinivasan2 and Edward H. Adelson3

Abstract— Hardness sensing is a valuable capability for a
robot touch sensor. We describe a novel method of hardness
sensing that does not require accurate control of contact
conditions. A GelSight sensor is a tactile sensor that provides
high resolution tactile images, which enables a robot to infer
object properties such as geometry and fine texture, as well
as contact force and slip conditions. The sensor is pressed on
silicone samples by a human or a robot and we measure the
sample hardness only with data from the sensor, without a
separate force sensor and without precise knowledge of the
contact trajectory. We describe the features that show object
hardness. For hemispherical objects, we develop a model to
measure the sample hardness, and the estimation error is about
4% in the range of 8 Shore 00 to 45 Shore A. With this
technology, a robot is able to more easily infer the hardness of
the touched objects, thereby improving its object recognition
as well as manipulation strategy.

I. INRODUCTION

For both humans and robots, the sense of touch is impor-
tant for object recognition and dexterous manipulation [1].
When we touch an object, we quickly learn a set of its
physical properties, such as the shape, smoothness, hardness,
thermal conductivity, etc. Those properties enable us to
quickly categorize the object and devise a suitable manip-
ulation strategy. Considerable research has been conducted
to infer tactile object properties using robots as well. Two
recent examples are Drimus et al. [2] and Chu et al. [3],
who introduced methods to infer multiple object properties
by analyzing touch sensor input during several controlled
exploration procedures.

Among the physical properties of objects, hardness is
particularly important. Many objects have distinct hardness
and which makes them easier to recognize, such as human
or animal bodies, cushions, sponges, food, and fabrics. A
robot would benefit from hardness detection to recognize
those objects in daily tasks and choose proper contact force
to avoid damage. Hardness is also helpful in specific jobs,
like product evaluation. For many fruits, like avocado, peach,
tomato, hardness indicates the level of ripeness. It would be
helpful to have a robot that is capable of estimating whether
a fruit is ready to eat by measuring its hardness. Palpation of
human tissue has diagnostic value and is useful in guiding
tele-surgery.

1Department of Mechanical Engineering, and Computer Science and
Artificial Intelligence Laboratory(CSAIL), MIT, Cambridge, MA 02139,
USA yuan wz@csail.mit.edu

2Laboratory for Human and Machine Haptics (MIT TouchLab), Research
Laboratory of Electronics and Department of Mechanical Engineering,
MIT, Cambridge, MA 02139, USA and UCL TouchLab, Computer Science
Department, UCL, London, UK srini@mit.edu

3Department of Brain and Cognitive Sciences and CSAIL, MIT, Cam-
bridge, MA 02139, USA adelson@csail.mit.edu

Fig. 1. The fingertip GelSight sensor and hemispherical silicone samples
used in this project. We manually press the sensor on samples, and infer
sample hardness from GelSight data sequences.

Hardness can be described in terms of deformation as a
function of force, suggesting the need for accurate force
sensing in the process. However, humans are surprisingly
good at estimating hardness with a passive fingertip, via
cutaneous touch alone, evidently based on the deformation
pattern of the fingertip [4]. We wish to replicate this capabil-
ity in a robot fingertip, allowing more convenient hardness
estimation when the contact force is unknown or poorly
controlled.

Object hardness is generally measured by touch, but there
are several challenges. It can be measured, for example,
by comparing the contact pressure and indentation depth
between the touch sensor and the contact object. However,
different object geometries give rise to different contact
forces, correlation the two is complicated, and measuring the
object shape to sufficient precision is difficult for most touch
sensors. There are several but limited attempts to measure
object hardness by tactile sensors, but they work only under
strict conditions, like the precise control of contact movement
and the single geometry or type of the objects.

We have attempted to expand the robot’s ability to estimate
object hardness with an optical based touch sensor GelSight
[5], [6]. The sensor takes high-resolution tactile images of the
contact geometry and deformation distribution. We press the
sensor against a set of silicone samples, as shown in Figure 1,
and get a set of data during the press, and show some
example results in Figure 2. The movement is intentionally
imprecise; it is performed by a human holding the sensor,

Capacitive

Piezoelectric

Optical tactile sensors

Typical Robotics Pipeline

Observations State
Estimation Planning Control

6DOF Pose Grasp Motion
PlanningObserved Images

Manipulation

Discussion

• What, if any, are some ways in which classical techniques may fall short for
manipulation tasks?

• Would it be possible to fix any of these via machine learning?

Manipulation is hard

• Actuators and sensors are far from mature
• Contact is hard to model
• High-dimensional systems can get hard to control
• Tasks are very varied

Dex-Net 2.0: Deep Learning to Plan Robust
Grasps with Synthetic Point Clouds

and Analytic Grasp Metrics
Jeffrey Mahler⇤, Jacky Liang⇤, Sherdil Niyaz⇤, Michael Laskey⇤, Richard Doan⇤, Xinyu Liu⇤,

Juan Aparicio Ojea†, and Ken Goldberg⇤
⇤Dept. of EECS, University of California, Berkeley

Email: {jmahler, jackyliang, sniyaz, laskeymd, rdoan, xinyuliu, goldberg}@berkeley.edu
† Siemens Corporation, Corporate Technology

Email: juan.aparicio@siemens.com

Abstract—To reduce data collection time for deep learning of

robust robotic grasp plans, we explore training from a synthetic

dataset of 6.7 million point clouds, grasps, and analytic grasp

metrics generated from thousands of 3D models from Dex-Net 1.0

in randomized poses on a table. We use the resulting dataset, Dex-

Net 2.0, to train a Grasp Quality Convolutional Neural Network

(GQ-CNN) model that rapidly predicts the probability of success

of grasps from depth images, where grasps are specified as the

planar position, angle, and depth of a gripper relative to an

RGB-D sensor. Experiments with over 1,000 trials on an ABB

YuMi comparing grasp planning methods on singulated objects

suggest that a GQ-CNN trained with only synthetic data from

Dex-Net 2.0 can be used to plan grasps in 0.8s with a success

rate of 93% on eight known objects with adversarial geometry

and is 3⇥ faster than registering point clouds to a precomputed

dataset of objects and indexing grasps. The Dex-Net 2.0 grasp

planner also has the highest success rate on a dataset of 10

novel rigid objects and achieves 99% precision (one false positive

out of 69 grasps classified as robust) on a dataset of 40 novel

household objects, some of which are articulated or deformable.

Code, datasets, videos, and supplementary material are available

at http://berkeleyautomation.github.io/dex-net.

I. INTRODUCTION

Reliable robotic grasping is challenging due to imprecision
in sensing and actuation, which leads to uncertainty about
properties such as object shape, pose, material properties, and
mass. Recent results suggest that deep neural networks trained
on large datasets of human grasp labels [31] or physical grasp
outcomes [40] can be used to plan grasps that are successful
across a wide variety of objects directly from images or
point clouds, similar to generalization results in computer
vision [28]. However, data collection requires either tedious
human labeling [25] or months of execution time on a physical
system [32].

An alternative approach is to plan grasps using physics-
based analyses such as caging [46], grasp wrench space
(GWS) analysis [44], robust GWS analysis [56], or sim-
ulation [25], which can be rapidly computed using Cloud
Computing [27]. However, these methods assume a separate
perception system that estimates properties such as object
shape or pose either perfectly [44] or according to known
Gaussian distributions [34]. This is prone to errors [2], may

Fig. 1: Dex-Net 2.0 Architecture. (Center) The Grasp Quality Convolutional
Neural Network (GQ-CNN) is trained offline to predict the robustness
candidate grasps from depth images using a dataset of 6.7 million synthetic
point clouds, grasps, and associated robust grasp metrics computed with Dex-
Net 1.0. (Left) When an object is presented to the robot, a depth camera
returns a 3D point cloud, where pairs of antipodal points identify a set of
several hundred grasp candidates. (Right) The GQ-CNN rapidly determines
the most robust grasp candidate, which is executed with the ABB YuMi robot.

not generalize well to new objects, and can be slow to
match point clouds to known models during execution [13].
In this paper we instead consider predicting grasp success
directly from depth images by training a deep Convolutional
Neural Network (CNN) on a massive dataset of parallel-jaw
grasps, grasp metrics, and rendered point clouds generated
using analytic models of robust grasping and image forma-
tion [18, 35], building upon recent research on classifying
force closure grasps [15, 51] and the outcomes of dynamic
grasping simulations [24, 25, 54].

Our primary contributions are: 1) the Dexterity Network
(Dex-Net) 2.0, a dataset associating 6.7 million point clouds
and analytic grasp quality metrics with parallel-jaw grasps
planned using robust quasi-static GWS analysis on a dataset
of 1,500 3D object models, 2) a Grasp Quality Convolutional
Neural Network (GQ-CNN) model trained to classify robust
grasps in depth images using expected epsilon quality as
supervision, where each grasp is specified as a planar pose
and depth relative to a camera, and 3) a grasp planning method
that samples antipodal grasp candidates and ranks them with
a GQ-CNN.

In over 1,000 physical trials of grasping single objects on
a tabletop with an ABB YuMi robot, we compare Dex-Net
2.0 to image-based grasp heuristics, a random forest [51], an

ar
X

iv
:1

70
3.

09
31

2v
3

 [c
s.R

O
]

8
A

ug
 2

01
7

Dex-Net 2.0: Deep Learning to Plan Robust
Grasps with Synthetic Point Clouds

and Analytic Grasp Metrics
Jeffrey Mahler⇤, Jacky Liang⇤, Sherdil Niyaz⇤, Michael Laskey⇤, Richard Doan⇤, Xinyu Liu⇤,

Juan Aparicio Ojea†, and Ken Goldberg⇤
⇤Dept. of EECS, University of California, Berkeley

Email: {jmahler, jackyliang, sniyaz, laskeymd, rdoan, xinyuliu, goldberg}@berkeley.edu
† Siemens Corporation, Corporate Technology

Email: juan.aparicio@siemens.com

Abstract—To reduce data collection time for deep learning of

robust robotic grasp plans, we explore training from a synthetic

dataset of 6.7 million point clouds, grasps, and analytic grasp

metrics generated from thousands of 3D models from Dex-Net 1.0

in randomized poses on a table. We use the resulting dataset, Dex-

Net 2.0, to train a Grasp Quality Convolutional Neural Network

(GQ-CNN) model that rapidly predicts the probability of success

of grasps from depth images, where grasps are specified as the

planar position, angle, and depth of a gripper relative to an

RGB-D sensor. Experiments with over 1,000 trials on an ABB

YuMi comparing grasp planning methods on singulated objects

suggest that a GQ-CNN trained with only synthetic data from

Dex-Net 2.0 can be used to plan grasps in 0.8s with a success

rate of 93% on eight known objects with adversarial geometry

and is 3⇥ faster than registering point clouds to a precomputed

dataset of objects and indexing grasps. The Dex-Net 2.0 grasp

planner also has the highest success rate on a dataset of 10

novel rigid objects and achieves 99% precision (one false positive

out of 69 grasps classified as robust) on a dataset of 40 novel

household objects, some of which are articulated or deformable.

Code, datasets, videos, and supplementary material are available

at http://berkeleyautomation.github.io/dex-net.

I. INTRODUCTION

Reliable robotic grasping is challenging due to imprecision
in sensing and actuation, which leads to uncertainty about
properties such as object shape, pose, material properties, and
mass. Recent results suggest that deep neural networks trained
on large datasets of human grasp labels [31] or physical grasp
outcomes [40] can be used to plan grasps that are successful
across a wide variety of objects directly from images or
point clouds, similar to generalization results in computer
vision [28]. However, data collection requires either tedious
human labeling [25] or months of execution time on a physical
system [32].

An alternative approach is to plan grasps using physics-
based analyses such as caging [46], grasp wrench space
(GWS) analysis [44], robust GWS analysis [56], or sim-
ulation [25], which can be rapidly computed using Cloud
Computing [27]. However, these methods assume a separate
perception system that estimates properties such as object
shape or pose either perfectly [44] or according to known
Gaussian distributions [34]. This is prone to errors [2], may

Fig. 1: Dex-Net 2.0 Architecture. (Center) The Grasp Quality Convolutional
Neural Network (GQ-CNN) is trained offline to predict the robustness
candidate grasps from depth images using a dataset of 6.7 million synthetic
point clouds, grasps, and associated robust grasp metrics computed with Dex-
Net 1.0. (Left) When an object is presented to the robot, a depth camera
returns a 3D point cloud, where pairs of antipodal points identify a set of
several hundred grasp candidates. (Right) The GQ-CNN rapidly determines
the most robust grasp candidate, which is executed with the ABB YuMi robot.

not generalize well to new objects, and can be slow to
match point clouds to known models during execution [13].
In this paper we instead consider predicting grasp success
directly from depth images by training a deep Convolutional
Neural Network (CNN) on a massive dataset of parallel-jaw
grasps, grasp metrics, and rendered point clouds generated
using analytic models of robust grasping and image forma-
tion [18, 35], building upon recent research on classifying
force closure grasps [15, 51] and the outcomes of dynamic
grasping simulations [24, 25, 54].

Our primary contributions are: 1) the Dexterity Network
(Dex-Net) 2.0, a dataset associating 6.7 million point clouds
and analytic grasp quality metrics with parallel-jaw grasps
planned using robust quasi-static GWS analysis on a dataset
of 1,500 3D object models, 2) a Grasp Quality Convolutional
Neural Network (GQ-CNN) model trained to classify robust
grasps in depth images using expected epsilon quality as
supervision, where each grasp is specified as a planar pose
and depth relative to a camera, and 3) a grasp planning method
that samples antipodal grasp candidates and ranks them with
a GQ-CNN.

In over 1,000 physical trials of grasping single objects on
a tabletop with an ABB YuMi robot, we compare Dex-Net
2.0 to image-based grasp heuristics, a random forest [51], an

ar
X

iv
:1

70
3.

09
31

2v
3

 [c
s.R

O
]

8
A

ug
 2

01
7

https://www.youtube.com/watch?v=i6K3GI2_EgU

Data Generation

Fig. 2: Graphical model for robust parallel-jaw grasping of objects on a table
surface based on point clouds. Blue nodes are variables included in the state
representation. Object shapes O are uniformly distributed over a discrete set of
object models and object poses To are distributed over the object’s stable poses
and a bounded region of a planar surface. Grasps u = (p,') are sampled
uniformly from the object surface using antipodality constraints. Given the
coefficient of friction � we evaluate an analytic success metric S for a grasp
on an object. A synthetic 2.5D point cloud y is generated from 3D meshes
based on the camera pose Tc, object shape, and pose and corrupted with
multiplicative and Gaussian Process noise.

A. Assumptions

We assume a parallel-jaw gripper, rigid objects singulated
on a planar worksurface, and single-view (2.5D) point clouds
taken with a depth camera. For generating datasets, we assume
a known gripper geometry and a single overhead depth camera
with known intrinsics.

B. Definitions

States. Let x = (O, To, Tc, �) denote a state describing the
variable properties of the camera and objects in the environ-
ment, where O specifies the geometry and mass properties of
an object, To, Tc are the 3D poses of the object and camera,
respectively, and � 2 R is the coefficient of friction between
the object and gripper.

Grasps. Let u = (p,') 2 R3
⇥ S

1 denote a parallel-jaw
grasp in 3D space specified by a center p = (x, y, z) 2 R3

relative to the camera and an angle in the table plane ' 2 S
1.

Point Clouds. Let y = RH⇥W

+ be a 2.5D point cloud
represented as a depth image with height H and width W

taken by a camera with known intrinsics [18], and let Tc be
the 3D pose of the camera.

Robust Analytic Grasp Metircs. Let S(u,x) 2 {0, 1} be
a binary-valued grasp success metric, such as force closure
or physical lifting. Let p(S,u,x,y) be a joint distribution
on grasp success, grasps, states, and point clouds modeling
imprecision in sensing and control. For example, p could be

defined by noisy sensor readings of a known set of industrial
parts coming down a conveyor belt in arbitrary poses. Let
the robustness of a grasp given an observation [5, 56] be the
expected value of the metric, or probability of success under
uncertainty in sensing and control: Q(u,y) = E [S | u,y] .

C. Objective

Our goal is to learn a robustness function Q✓⇤(u,y) 2 [0, 1]
over many possible grasps, objects, and images that classifies
grasps according to the binary success metric:

✓
⇤ = argmin

✓2⇥
Ep(S,u,x,y) [L(S,Q✓(u,y))] (III.1)

where L is the cross-entropy loss function and ⇥ defines the
parameters of the Grasp Quality Convolutional Network (GQ-
CNN) described in Section IV-B. This objective is motivated
by that fact that Q✓⇤ = Q for all possible grasps and images
when there exists some ✓ 2 ⇥ such that Q✓ = Q [36]. The
estimated robustness function can be used in a grasping policy
that maximizes Q✓⇤ over a set of candidate grasps: ⇡✓(y) =
argmaxu2CQ✓(u,y), where C specifies constraints on the set
of available grasps, such as collisions or kinematic feasibility.
Learning Q rather than directly learning the policy allows us
to enforce task-specific constraints without having to update
the learned model.

IV. LEARNING A GRASP ROBUSTNESS FUNCTION

Solving for the grasp robustness function in objective B.1
is challenging for several reasons. First, we may need a huge
number of samples to approximate the expectation over a large
number of possible objects. We address this by generating
Dex-Net 2.0, a training dataset of 6.7 million synthetic point
clouds, parallel-jaw grasps, and robust analytic grasp metrics
across 1,500 3D models sampled from the graphical model in
Fig. 2. Second, the relationship between point clouds, grasps,
and metrics over a large datset of objects may be complex
and difficult to learn with linear or kernelized models. Con-
sequently, we develop a Grasp Quality Convolutional Neural
Network (GQ-CNN) model that classifies robust grasp poses
in depth images and train the model on data from Dex-Net
2.0.

A. Dataset Generation

We estimate Q✓⇤ using a sample approximation [11]
of the objective in Equation B.1 using i.i.d samples
(S1,u1,x1,y1), ..., (SN ,uN ,xN ,yN) ⇠ p(S,u,x,y) from
our generative graphical model for images, grasps, and success
metrics:

✓̂ = argmin
✓2⇥

NX

i=1

L(Si, Q✓(ui,yi)).

1) Graphical Model: Our graphical model is illustrated
in Fig. 2 and models p(S,u,x,y) as the product of a state
distribution p(x), an observation model p(y|x), a grasp can-
didate model p(u|x), and an analytic model of grasp success
p(S|u,x).

Fig. 3: Dex-Net 2.0 pipeline for training dataset generation. (Left) The database contains 1,500 3D object mesh models. (Top) For each object, we sample
hundreds of parallel-jaw grasps to cover the surface and evaluate robust analytic grasp metrics using sampling. For each stable pose of the object we associate
a set of grasps that are perpendicular to the table and collision-free for a given gripper model. (Bottom) We also render point clouds of each object in each
stable pose, with the planar object pose and camera pose sampled uniformly at random. Every grasp for a given stable pose is associated with a pixel location
and orientation in the rendered image. (Right) Each image is rotated, translated, cropped, and scaled to align the grasp pixel location with the image center
and the grasp axis with the middle row of the image, creating a 32⇥ 32 grasp image. The full dataset contains over 6.7 million grasp images.

Distribution Description

p(�) truncated Gaussian distribution over friction coefficients
p(O) discrete uniform distribution over 3D object models

p(To|O)
continuous uniform distribution over the discrete set of

object stable poses and planar poses on the table surface

p(Tc)
continuous uniform distribution over spherical coordinates

for radial bounds [r`, ru] and polar angle in [0, �]

TABLE I: Details of the distributions used in the Dex-Net 2.0 graphical model
for generating the Dex-Net training dataset.

We model the state distribution as

p(x) = p(�)p(O)p(To|O)p(Tc)

where the distributions are detailed in Table I. Our grasp
candidate model p(u | x) is a uniform distribution over
pairs of antipodal contact points on the object surface that
form a grasp axis parallel to the table plane. Our observation
model is y = ↵ŷ + ✏ where ŷ is a rendered depth image
for a given object in a given pose, ↵ is a Gamma random
variable modeling depth-proportional noise, and ✏ is zero-mean
Gaussian Process noise over pixel coordinates with bandwidth
` and measurement noise � modeling additive noise [35]. We
model grasp success as:

S(u,x) =

⇢
1 EQ > � and collfree(u,x)
0 otherwise

where EQ is the robust epsilon quality defined in [51], a
variant of the pose error robust metric [56] that includes
uncertainty in friction and gripper pose, and collfree(u,x)
indicates that the gripper does not collide with the object or
table. The supplemental file details the parameters of these
distributions.

2) Database: Dex-Net 2.0 contains 6.7 million datapoints
generated using the pipeline of Fig. 3.

3D Models. The dataset contains a subset of 1,500 mesh
models from Dex-Net 1.0: 1,371 synthetic models from

3DNet [57] and 129 laser scans from the KIT object
database [26]. Each mesh is aligned to a standard frame of
reference using the principal axes, rescaled to fit within a
gripper width of 5.0cm (the opening width of an ABB YuMi
gripper), and assigned a mass of 1.0kg centered in the object
bounding box since some meshes are nonclosed. For each
object we also compute a set of stable poses [12] and store all
stable poses with probability of occurence above a threshold.

Parallel-Jaw Grasps. Each object is labeled with a set of up
to 100 parallel-jaw grasps. The grasps are sampled using the
rejection sampling method for antipodal point pairs developed
in Dex-Net 1.0 [34] with constraints to ensure coverage
of the object surface [33]. For each grasp we evaluate the
expected epsilon quality EQ [42] under object pose, gripper
pose, and friction coefficient uncertainty using Monte-Carlo
sampling [51],

Rendered Point Clouds. Every object is also paired with a
set of 2.5D point clouds (depth images) for each object stable
pose, with camera poses and planar object poses sampled
according to the graphical model described in Section IV-A1.
Images are rendered using a pinhole camera model and per-
spective projection with known camera intrinsics, and each
rendered image is centered on the object of interest using pixel
transformations. Noise is added to the images during training
as described in Section IV-B3.

B. Grasp Quality Convolutional Neural Network
1) Architecture: The Grasp Quality Convolutional Neural

Network (GQ-CNN) architecture, illustrated in Fig. 4 and
detailed in the caption, defines the set of parameters ⇥ used
to represent the grasp robustness function Q✓. The GQ-CNN
takes as input the gripper depth from the camera z and a
depth image centered on the grasp center pixel v = (i, j) and
aligned with the grasp axis orientation '. The image-gripper
alignment removes the need to learn rotational invariances that
can be modeled by known, computationally-efficient image

Fig. 3: Dex-Net 2.0 pipeline for training dataset generation. (Left) The database contains 1,500 3D object mesh models. (Top) For each object, we sample
hundreds of parallel-jaw grasps to cover the surface and evaluate robust analytic grasp metrics using sampling. For each stable pose of the object we associate
a set of grasps that are perpendicular to the table and collision-free for a given gripper model. (Bottom) We also render point clouds of each object in each
stable pose, with the planar object pose and camera pose sampled uniformly at random. Every grasp for a given stable pose is associated with a pixel location
and orientation in the rendered image. (Right) Each image is rotated, translated, cropped, and scaled to align the grasp pixel location with the image center
and the grasp axis with the middle row of the image, creating a 32⇥ 32 grasp image. The full dataset contains over 6.7 million grasp images.

Distribution Description

p(�) truncated Gaussian distribution over friction coefficients
p(O) discrete uniform distribution over 3D object models

p(To|O)
continuous uniform distribution over the discrete set of

object stable poses and planar poses on the table surface

p(Tc)
continuous uniform distribution over spherical coordinates

for radial bounds [r`, ru] and polar angle in [0, �]

TABLE I: Details of the distributions used in the Dex-Net 2.0 graphical model
for generating the Dex-Net training dataset.

We model the state distribution as

p(x) = p(�)p(O)p(To|O)p(Tc)

where the distributions are detailed in Table I. Our grasp
candidate model p(u | x) is a uniform distribution over
pairs of antipodal contact points on the object surface that
form a grasp axis parallel to the table plane. Our observation
model is y = ↵ŷ + ✏ where ŷ is a rendered depth image
for a given object in a given pose, ↵ is a Gamma random
variable modeling depth-proportional noise, and ✏ is zero-mean
Gaussian Process noise over pixel coordinates with bandwidth
` and measurement noise � modeling additive noise [35]. We
model grasp success as:

S(u,x) =

⇢
1 EQ > � and collfree(u,x)
0 otherwise

where EQ is the robust epsilon quality defined in [51], a
variant of the pose error robust metric [56] that includes
uncertainty in friction and gripper pose, and collfree(u,x)
indicates that the gripper does not collide with the object or
table. The supplemental file details the parameters of these
distributions.

2) Database: Dex-Net 2.0 contains 6.7 million datapoints
generated using the pipeline of Fig. 3.

3D Models. The dataset contains a subset of 1,500 mesh
models from Dex-Net 1.0: 1,371 synthetic models from

3DNet [57] and 129 laser scans from the KIT object
database [26]. Each mesh is aligned to a standard frame of
reference using the principal axes, rescaled to fit within a
gripper width of 5.0cm (the opening width of an ABB YuMi
gripper), and assigned a mass of 1.0kg centered in the object
bounding box since some meshes are nonclosed. For each
object we also compute a set of stable poses [12] and store all
stable poses with probability of occurence above a threshold.

Parallel-Jaw Grasps. Each object is labeled with a set of up
to 100 parallel-jaw grasps. The grasps are sampled using the
rejection sampling method for antipodal point pairs developed
in Dex-Net 1.0 [34] with constraints to ensure coverage
of the object surface [33]. For each grasp we evaluate the
expected epsilon quality EQ [42] under object pose, gripper
pose, and friction coefficient uncertainty using Monte-Carlo
sampling [51],

Rendered Point Clouds. Every object is also paired with a
set of 2.5D point clouds (depth images) for each object stable
pose, with camera poses and planar object poses sampled
according to the graphical model described in Section IV-A1.
Images are rendered using a pinhole camera model and per-
spective projection with known camera intrinsics, and each
rendered image is centered on the object of interest using pixel
transformations. Noise is added to the images during training
as described in Section IV-B3.

B. Grasp Quality Convolutional Neural Network
1) Architecture: The Grasp Quality Convolutional Neural

Network (GQ-CNN) architecture, illustrated in Fig. 4 and
detailed in the caption, defines the set of parameters ⇥ used
to represent the grasp robustness function Q✓. The GQ-CNN
takes as input the gripper depth from the camera z and a
depth image centered on the grasp center pixel v = (i, j) and
aligned with the grasp axis orientation '. The image-gripper
alignment removes the need to learn rotational invariances that
can be modeled by known, computationally-efficient image

Fig. 3: Dex-Net 2.0 pipeline for training dataset generation. (Left) The database contains 1,500 3D object mesh models. (Top) For each object, we sample
hundreds of parallel-jaw grasps to cover the surface and evaluate robust analytic grasp metrics using sampling. For each stable pose of the object we associate
a set of grasps that are perpendicular to the table and collision-free for a given gripper model. (Bottom) We also render point clouds of each object in each
stable pose, with the planar object pose and camera pose sampled uniformly at random. Every grasp for a given stable pose is associated with a pixel location
and orientation in the rendered image. (Right) Each image is rotated, translated, cropped, and scaled to align the grasp pixel location with the image center
and the grasp axis with the middle row of the image, creating a 32⇥ 32 grasp image. The full dataset contains over 6.7 million grasp images.

Distribution Description

p(�) truncated Gaussian distribution over friction coefficients
p(O) discrete uniform distribution over 3D object models

p(To|O)
continuous uniform distribution over the discrete set of

object stable poses and planar poses on the table surface

p(Tc)
continuous uniform distribution over spherical coordinates

for radial bounds [r`, ru] and polar angle in [0, �]

TABLE I: Details of the distributions used in the Dex-Net 2.0 graphical model
for generating the Dex-Net training dataset.

We model the state distribution as

p(x) = p(�)p(O)p(To|O)p(Tc)

where the distributions are detailed in Table I. Our grasp
candidate model p(u | x) is a uniform distribution over
pairs of antipodal contact points on the object surface that
form a grasp axis parallel to the table plane. Our observation
model is y = ↵ŷ + ✏ where ŷ is a rendered depth image
for a given object in a given pose, ↵ is a Gamma random
variable modeling depth-proportional noise, and ✏ is zero-mean
Gaussian Process noise over pixel coordinates with bandwidth
` and measurement noise � modeling additive noise [35]. We
model grasp success as:

S(u,x) =

⇢
1 EQ > � and collfree(u,x)
0 otherwise

where EQ is the robust epsilon quality defined in [51], a
variant of the pose error robust metric [56] that includes
uncertainty in friction and gripper pose, and collfree(u,x)
indicates that the gripper does not collide with the object or
table. The supplemental file details the parameters of these
distributions.

2) Database: Dex-Net 2.0 contains 6.7 million datapoints
generated using the pipeline of Fig. 3.

3D Models. The dataset contains a subset of 1,500 mesh
models from Dex-Net 1.0: 1,371 synthetic models from

3DNet [57] and 129 laser scans from the KIT object
database [26]. Each mesh is aligned to a standard frame of
reference using the principal axes, rescaled to fit within a
gripper width of 5.0cm (the opening width of an ABB YuMi
gripper), and assigned a mass of 1.0kg centered in the object
bounding box since some meshes are nonclosed. For each
object we also compute a set of stable poses [12] and store all
stable poses with probability of occurence above a threshold.

Parallel-Jaw Grasps. Each object is labeled with a set of up
to 100 parallel-jaw grasps. The grasps are sampled using the
rejection sampling method for antipodal point pairs developed
in Dex-Net 1.0 [34] with constraints to ensure coverage
of the object surface [33]. For each grasp we evaluate the
expected epsilon quality EQ [42] under object pose, gripper
pose, and friction coefficient uncertainty using Monte-Carlo
sampling [51],

Rendered Point Clouds. Every object is also paired with a
set of 2.5D point clouds (depth images) for each object stable
pose, with camera poses and planar object poses sampled
according to the graphical model described in Section IV-A1.
Images are rendered using a pinhole camera model and per-
spective projection with known camera intrinsics, and each
rendered image is centered on the object of interest using pixel
transformations. Noise is added to the images during training
as described in Section IV-B3.

B. Grasp Quality Convolutional Neural Network
1) Architecture: The Grasp Quality Convolutional Neural

Network (GQ-CNN) architecture, illustrated in Fig. 4 and
detailed in the caption, defines the set of parameters ⇥ used
to represent the grasp robustness function Q✓. The GQ-CNN
takes as input the gripper depth from the camera z and a
depth image centered on the grasp center pixel v = (i, j) and
aligned with the grasp axis orientation '. The image-gripper
alignment removes the need to learn rotational invariances that
can be modeled by known, computationally-efficient image

Data Generation

Fig. 3: Dex-Net 2.0 pipeline for training dataset generation. (Left) The database contains 1,500 3D object mesh models. (Top) For each object, we sample
hundreds of parallel-jaw grasps to cover the surface and evaluate robust analytic grasp metrics using sampling. For each stable pose of the object we associate
a set of grasps that are perpendicular to the table and collision-free for a given gripper model. (Bottom) We also render point clouds of each object in each
stable pose, with the planar object pose and camera pose sampled uniformly at random. Every grasp for a given stable pose is associated with a pixel location
and orientation in the rendered image. (Right) Each image is rotated, translated, cropped, and scaled to align the grasp pixel location with the image center
and the grasp axis with the middle row of the image, creating a 32⇥ 32 grasp image. The full dataset contains over 6.7 million grasp images.

Distribution Description

p(�) truncated Gaussian distribution over friction coefficients
p(O) discrete uniform distribution over 3D object models

p(To|O)
continuous uniform distribution over the discrete set of

object stable poses and planar poses on the table surface

p(Tc)
continuous uniform distribution over spherical coordinates

for radial bounds [r`, ru] and polar angle in [0, �]

TABLE I: Details of the distributions used in the Dex-Net 2.0 graphical model
for generating the Dex-Net training dataset.

We model the state distribution as

p(x) = p(�)p(O)p(To|O)p(Tc)

where the distributions are detailed in Table I. Our grasp
candidate model p(u | x) is a uniform distribution over
pairs of antipodal contact points on the object surface that
form a grasp axis parallel to the table plane. Our observation
model is y = ↵ŷ + ✏ where ŷ is a rendered depth image
for a given object in a given pose, ↵ is a Gamma random
variable modeling depth-proportional noise, and ✏ is zero-mean
Gaussian Process noise over pixel coordinates with bandwidth
` and measurement noise � modeling additive noise [35]. We
model grasp success as:

S(u,x) =

⇢
1 EQ > � and collfree(u,x)
0 otherwise

where EQ is the robust epsilon quality defined in [51], a
variant of the pose error robust metric [56] that includes
uncertainty in friction and gripper pose, and collfree(u,x)
indicates that the gripper does not collide with the object or
table. The supplemental file details the parameters of these
distributions.

2) Database: Dex-Net 2.0 contains 6.7 million datapoints
generated using the pipeline of Fig. 3.

3D Models. The dataset contains a subset of 1,500 mesh
models from Dex-Net 1.0: 1,371 synthetic models from

3DNet [57] and 129 laser scans from the KIT object
database [26]. Each mesh is aligned to a standard frame of
reference using the principal axes, rescaled to fit within a
gripper width of 5.0cm (the opening width of an ABB YuMi
gripper), and assigned a mass of 1.0kg centered in the object
bounding box since some meshes are nonclosed. For each
object we also compute a set of stable poses [12] and store all
stable poses with probability of occurence above a threshold.

Parallel-Jaw Grasps. Each object is labeled with a set of up
to 100 parallel-jaw grasps. The grasps are sampled using the
rejection sampling method for antipodal point pairs developed
in Dex-Net 1.0 [34] with constraints to ensure coverage
of the object surface [33]. For each grasp we evaluate the
expected epsilon quality EQ [42] under object pose, gripper
pose, and friction coefficient uncertainty using Monte-Carlo
sampling [51],

Rendered Point Clouds. Every object is also paired with a
set of 2.5D point clouds (depth images) for each object stable
pose, with camera poses and planar object poses sampled
according to the graphical model described in Section IV-A1.
Images are rendered using a pinhole camera model and per-
spective projection with known camera intrinsics, and each
rendered image is centered on the object of interest using pixel
transformations. Noise is added to the images during training
as described in Section IV-B3.

B. Grasp Quality Convolutional Neural Network
1) Architecture: The Grasp Quality Convolutional Neural

Network (GQ-CNN) architecture, illustrated in Fig. 4 and
detailed in the caption, defines the set of parameters ⇥ used
to represent the grasp robustness function Q✓. The GQ-CNN
takes as input the gripper depth from the camera z and a
depth image centered on the grasp center pixel v = (i, j) and
aligned with the grasp axis orientation '. The image-gripper
alignment removes the need to learn rotational invariances that
can be modeled by known, computationally-efficient image

GQ-CNN

Fig. 4: (Left) Architecture of the Grasp Quality Convolutional Neural Network (GQ-CNN). Planar grasp candidates u = (i, j,', z) are generated from a
depth image and transformed to align the image with the grasp center pixel (i, j) and orientation '. The architecture contains four convolutional layers in
pairs of two separated by ReLU nonlinearities followed by 3 fully connected layers and a separate input layer for the z, the distance of the gripper from the
camera. The use of convolutional layers was motivated by the relevance of depth edges as features for learning in previous research [3, 31, 34] and the use
of ReLUs was motivated by image classification results [28]. The network estimates the probability of grasp success (robustness) Q✓ 2 [0, 1], which can be
used to rank grasp candidates. (Right) The first layer of convolutional filters learned by the GQ-CNN on Dex-Net 2.0. The filters appear to compute oriented
image gradients at various scales, which may be useful for inferring contact normals and collisions between the gripper and object.

transformations (similar to spatial transformer networks [23])
and allows the network to evaluate any grasp orientation in
the image rather than a predefined discrete set as in [24, 40].
Following standard preprocessing conventions, we normalize
the input data by subtracting the mean and dividing by the
standard deviation of the training data and then pass the
image and gripper depth through the network to estimate
grasp robustness. The GQ-CNN has approximately 18 million
parameters.

2) Training Dataset: GQ-CNN training datasets are gen-
erated by associating grasps with a pixel v, orientation ',
and depth z relative to rendered depth images as illustrated in
Fig. 3. We compute these parameters by transforming grasps
into the camera frame of reference using the camera pose
Tc and projecting the 3D grasp position and orientation onto
the imaging plane of the camera [18]. We then transform all
pairs of images and grasp configurations to a single image
centered on v and oriented along ' (see the left panel of
Fig. 4 for an illustration). The Dex-Net 2.0 training dataset
contains 6.7 million datapoints and approximately 21.2%
positive examples for the thresholded robust epsilon quality
with threshold � = 0.002 [25] and a custom YuMi gripper.

3) Optimization: We optimize the parameters of the GQ-
CNN using backpropagation with stochastic gradient descent
and momentum [28]. We initialize the weights of the model by
sampling from a zero mean gaussian with variance 2

ni
, where

ni is the number of inputs to the i-th network layer [19]. To
augment the dataset, we reflect the image about its vertical and
horizontal axes and rotate each image by 180� since these lead
to equivalent grasps. We also adaptively sample image noise
from our noise model (see Section IV-A1) before computing
the batch gradient for new samples during training to model
imaging noise without explicitly storing multiple versions of
each image. To speed up noise sampling we approximate the
Gaussian Process noise by upsampling an array of uncorrelated
zero-mean Gaussian noise using bilinear interpolation. We set
hyperparameters based on the performance on a randomize

synthetic validation set as described in Section VI-C.

V. GRASP PLANNING

The Dex-Net 2.0 grasp planner uses the robust grasping
policy ⇡✓(y) = argmaxu2CQ✓(u,y) illustrated in Fig. 1. The
set C is a discrete set of antipodal candidate grasps [6] sampled
uniformly at random in image space for surface normals
defined by the depth image gradients. Each grasp candidate
is evaluated by the GQ-CNN, and the most robust grasp that
is (a) kinematically reachable and (b) not in collision with the
table is executed. The supplemental file contains additional
details.

VI. EXPERIMENTS

We evaluated clasification performance on both real and
synthetic data and performed extensive physical evaluations
on an ABB YuMi with custom silicone gripper tips designed
by Guo et al. [16] to benchmark the performance of grasping
a single object. All experiments ran on a Desktop running
Ubuntu 14.04 with a 2.7 GHz Intel Core i5-6400 Quad-Core
CPU and an NVIDIA GeForce 980, and we used an NVIDIA
GeForce GTX 1080 for training large models.

A. Physical Benchmark Description

We created a benchmark for grasping single objects on a
tabletop to compare grasp planning methods. The setup is il-
lustrated in Fig. 5 and the experimental procedure is described
in the caption and shown in the supplemental video1. Each
grasp planner received as input a color image, depth image,
bounding box containing the object, and camera intrinsics,
and output a target grasping pose for the gripper. A human
operator was required to reset the object in the workspace on
each trial, and therefore blinded operators from which grasp
planning method was being tested in order to remove bias.

We compared performance on this benchmark with the
following metrics:

1https://youtu.be/9eqAxk95I3Y

• Learn a Q-function,
• CNN on pose aligned depth images
• Trained via supervised learning
• Test time:

•
• Optimized via CEM

Qθ(u, y)

Fig. 4: (Left) Architecture of the Grasp Quality Convolutional Neural Network (GQ-CNN). Planar grasp candidates u = (i, j,', z) are generated from a
depth image and transformed to align the image with the grasp center pixel (i, j) and orientation '. The architecture contains four convolutional layers in
pairs of two separated by ReLU nonlinearities followed by 3 fully connected layers and a separate input layer for the z, the distance of the gripper from the
camera. The use of convolutional layers was motivated by the relevance of depth edges as features for learning in previous research [3, 31, 34] and the use
of ReLUs was motivated by image classification results [28]. The network estimates the probability of grasp success (robustness) Q✓ 2 [0, 1], which can be
used to rank grasp candidates. (Right) The first layer of convolutional filters learned by the GQ-CNN on Dex-Net 2.0. The filters appear to compute oriented
image gradients at various scales, which may be useful for inferring contact normals and collisions between the gripper and object.

transformations (similar to spatial transformer networks [23])
and allows the network to evaluate any grasp orientation in
the image rather than a predefined discrete set as in [24, 40].
Following standard preprocessing conventions, we normalize
the input data by subtracting the mean and dividing by the
standard deviation of the training data and then pass the
image and gripper depth through the network to estimate
grasp robustness. The GQ-CNN has approximately 18 million
parameters.

2) Training Dataset: GQ-CNN training datasets are gen-
erated by associating grasps with a pixel v, orientation ',
and depth z relative to rendered depth images as illustrated in
Fig. 3. We compute these parameters by transforming grasps
into the camera frame of reference using the camera pose
Tc and projecting the 3D grasp position and orientation onto
the imaging plane of the camera [18]. We then transform all
pairs of images and grasp configurations to a single image
centered on v and oriented along ' (see the left panel of
Fig. 4 for an illustration). The Dex-Net 2.0 training dataset
contains 6.7 million datapoints and approximately 21.2%
positive examples for the thresholded robust epsilon quality
with threshold � = 0.002 [25] and a custom YuMi gripper.

3) Optimization: We optimize the parameters of the GQ-
CNN using backpropagation with stochastic gradient descent
and momentum [28]. We initialize the weights of the model by
sampling from a zero mean gaussian with variance 2

ni
, where

ni is the number of inputs to the i-th network layer [19]. To
augment the dataset, we reflect the image about its vertical and
horizontal axes and rotate each image by 180� since these lead
to equivalent grasps. We also adaptively sample image noise
from our noise model (see Section IV-A1) before computing
the batch gradient for new samples during training to model
imaging noise without explicitly storing multiple versions of
each image. To speed up noise sampling we approximate the
Gaussian Process noise by upsampling an array of uncorrelated
zero-mean Gaussian noise using bilinear interpolation. We set
hyperparameters based on the performance on a randomize

synthetic validation set as described in Section VI-C.

V. GRASP PLANNING

The Dex-Net 2.0 grasp planner uses the robust grasping
policy ⇡✓(y) = argmaxu2CQ✓(u,y) illustrated in Fig. 1. The
set C is a discrete set of antipodal candidate grasps [6] sampled
uniformly at random in image space for surface normals
defined by the depth image gradients. Each grasp candidate
is evaluated by the GQ-CNN, and the most robust grasp that
is (a) kinematically reachable and (b) not in collision with the
table is executed. The supplemental file contains additional
details.

VI. EXPERIMENTS

We evaluated clasification performance on both real and
synthetic data and performed extensive physical evaluations
on an ABB YuMi with custom silicone gripper tips designed
by Guo et al. [16] to benchmark the performance of grasping
a single object. All experiments ran on a Desktop running
Ubuntu 14.04 with a 2.7 GHz Intel Core i5-6400 Quad-Core
CPU and an NVIDIA GeForce 980, and we used an NVIDIA
GeForce GTX 1080 for training large models.

A. Physical Benchmark Description

We created a benchmark for grasping single objects on a
tabletop to compare grasp planning methods. The setup is il-
lustrated in Fig. 5 and the experimental procedure is described
in the caption and shown in the supplemental video1. Each
grasp planner received as input a color image, depth image,
bounding box containing the object, and camera intrinsics,
and output a target grasping pose for the gripper. A human
operator was required to reset the object in the workspace on
each trial, and therefore blinded operators from which grasp
planning method was being tested in order to remove bias.

We compared performance on this benchmark with the
following metrics:

1https://youtu.be/9eqAxk95I3Y

Fig. 9: (Left) Grasp robustness predicted by a Grasp Quality Convolutional
Neural Network (GQ-CNN) trained with Dex-Net 2.0 over the space of depth
images and grasps for a single point cloud collected with a Primesense
Carmine. As the center of the gripper moves from the top to the bottom of the
image the GQ-CNN prediction stays near zero and spikes on the most robust
grasp (right), for which the gripper fits into a small opening on the object
surface. This suggests that the GQ-CNN has learned a detailed representation
of the collision space between the object and gripper. Furthermore, the sharp
spike suggests that it may be difficult to plan robust grasps by randomly
sampling grasps in image space. We consider planning the most robust grasp
using the cross-entropy method on the GQ-CNN response.

algorithm takes as input the number of CEM iterations m, the
number of initial grasps to sample n, the number of grasps
to resample from the model c, the number of GMM mixure
components k, a friction coefficient µ, and elite percentage �,
and the GQ-CNN Q✓, and returns an estimate of the most
robust grasp u. In our generalization experiment we used
m = 3, n = 100, c = 50, µ = 0.8, k = 3, and � = 25%. The
qualitative performance of our method on several examples
from our experiments is illustrated in Fig. 10.

1 Input: Num rounds m, Num inital samples n, Num CEM
samples c, Num GMM mixture k, Friction coef µ, Elite
percentage �, Robustness function Q✓

Result: u, most robust grasp
2 U uniform set of n antipodal grasps;
3 for i = 1, ..., m do

4 E top ��percentile of grasps ranked by Q✓;
5 M GMM fit to E with k mixtures;
6 G c iid samples from M ;
7 end

8 return argmax
u2U

Q✓(u,y);

Algorithm 2: Robust Grasping Policy using the Cross En-
tropy Method on a Learned GQ-CNN

REFERENCES

[1] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo,
Zhifeng Chen, Craig Citro, Greg S Corrado, Andy Davis, Jeffrey
Dean, Matthieu Devin, et al. Tensorflow: Large-scale machine
learning on heterogeneous distributed systems. arXiv preprint
arXiv:1603.04467, 2016.

[2] Ravi Balasubramanian, Ling Xu, Peter D Brook, Joshua R Smith,
and Yoky Matsuoka. Physical human interactive guidance: Iden-
tifying grasping principles from human-planned grasps. IEEE
Trans. Robotics, 28(4):899–910, 2012.

[3] Jeannette Bohg and Danica Kragic. Learning grasping points with
shape context. Robotics and Autonomous Systems, 58(4):362–377,
2010.

Fig. 10: Example input color images and maps of the grasp robust estimated
by the GQ-CNN over grasp centers for a constant grasp axis angle in image
space and height above the table, with the grasp planned by our CEM-based
robust grasping policy shown in black. CEM is able to find precise robust
grasping locations encoded by the GQ-CNN that are very close to the global
maximum for the given grasp axis and height. The GQ-CNN also appears to
assign non-zero robustness to several grasps that completely miss the object.
This is likely because no such grasps are in the training set, and future work
could augment the training dataset to avoid these grasps.

[4] Jeannette Bohg, Antonio Morales, Tamim Asfour, and Danica
Kragic. Data-driven grasp synthesisa survey. IEEE Trans.
Robotics, 30(2):289–309, 2014.

[5] Peter Brook, Matei Ciocarlie, and Kaijen Hsiao. Collaborative
grasp planning with multiple object representations. In Proc. IEEE

Experiments (Offline)

Fig. 5: (Left) The experimental platform for benchmarking grasping with the
ABB YuMi. We registered the camera to the robot with a chessboard before
each experiment. In each trial a human operator sampled an object pose by
shaking the object in a box and placing it upside down in the workspace.
We then took an RGB-D image with a Primsense Carmine 1.08, filled in the
image using inpainting [24], segmented the object using color background
subtraction, and formed a bounding box for the detected object. The grasp
planner under evaluation then planned a gripper pose and the YuMi executed
the grasp. Grasps were considered successful if the gripper held the object
after lifting, transporting, and shaking the object. (Top-Right) The training
set of 8 objects with adversarial geometric features such as smooth curved
surfaces and narrow openings for grasping known objects. (Bottom-Right)
The test set of 10 household objects not seen during training.

1) Success Rate: The percentage of grasps that were able
to lift, transport, and hold a desired object after shaking.

2) Precision: The success rate on grasps that are have an
estimated robustness higher than 50%. This measures
performance when the robot can decide not to grasp an
object, which could be useful when the robot has other
actions (e.g. pushing) available.

3) Robust Grasp Rate: The percentage of planned grasps
with an estimated robustness higher than 50%.

4) Planning Time: The time in seconds between receiving
an image and returning a planned grasp.

B. Datasets
Fig. 5 illustrates the physical object datasets used in the

benchmark:
1) Train: A validation set of 8 3D-printed objects with

adversarial geometric features such as smooth, curved
surfaces. This is used to set model parameters and to
evaluate performance on known objects.

2) Test: A set of 10 household objects similar to models in
Dex-Net 2.0 with various material, geometric, and spec-
ular properties. This is used to evaluate generalization
to unknown objects.

We chose objects based on geometric features under three
constraints: (a) small enough to fit within the workspace, (b)
weight less than 0.25kg, the payload of the YuMi, and (c)
height from the table greater than 1.0cm due to a limitation
of the silicone gripper fingertips.

We used four different GQ-CNN training datasets to study
the effect on performance, each with a 80-20 image-wise
training and validation split:

1) Adv-Synth: Synthetic images and grasps for the adver-
sarial objects in Train (189k datapoints).

2) Adv-Phys: Outcomes of executing random antipodal
grasps with random gripper height and friction coeffi-

Fig. 6: Receiver operating character-
istic comparing the performance of
learning models on Adv-Synth. The
GQ-CNN models all perform simi-
larly and have a significantly higher
true positive rate when compared to
ML-RF and ML-SVM.

Model Accuracy (%)

ML-SVM 89.7
ML-RF 90.5

GQ-S-Adv 97.8
GQ-L-Adv 97.8

GQ-Adv 98.1

TABLE II: The classification accu-
racy of each model on Adv-Synth.
We see that the GQ-CNN methods
have less than 2.5% test error while
ML-RF and ML-SVM are closer
to 10% error. Pretraining does not
appear to affect performance.

cient of µ = 0.5 in 50 physical trials per object in Train
(400 datapoints).

3) Dex-Net-Small: A subset of data from 150 models
sampled uniformly from Dex-Net 2.0 (670k datapoints).

4) Dex-Net-Large: Data from all 1500 models in Dex-Net
2.0 (6.7m datapoints).

C. Grasp Planning Methods Used for Comparison
We compared a number of grasp planning methods on

simulated and real data. We tuned the parameters of each
method based on synthetic classification performance and
physical performance on the training objects. All methods
other than point cloud registration used the antipodal grasp
sampling method described in Section V with the same set
of parameters to generate candidate grasps, and each planner
executes the highest-ranked grasp according to the method.
Additional details on the methods and their parameters can be
found in the supplemental file.

Image-based Grasp Quality Metrics (IGQ). We sampled
a set of force closure grasp candidates by finding antipodal
points on the object boundary [6] using edge detection and
ranked grasps by the distance from the center of the jaws
to the centroid of the object segmentation mask. We set the
gripper depth using a fixed offset from the depth of the grasp
center pixel.

Point-Cloud Registration (REG). We also compared with
grasp planning based on point cloud registration, a state-of-
the-art method for using precomputed grasps [13, 20]. We
first coarsely estimated the object instance and pose based on
the top 3 most similar synthetic images from Dex-Net 2.0,
where similarity is measured as distance between AlexNet
conv5 features [13, 34]. After coarse matching, we finetuned
the pose of the object in the table plane using Iterated
Closest Point [17, 27] with a point-to-plane cost. Finally, we
retrieved the most robust gripper pose from Dex-Net 2.0 for
the estimated object. The system had a median translational
error of 4.5mm a median rotational error of 3.5� in the table
plane for known objects.

Alternative Machine Learning Models (ML). We also
compared the performance of a Random Forest with 200

Fig. 5: (Left) The experimental platform for benchmarking grasping with the
ABB YuMi. We registered the camera to the robot with a chessboard before
each experiment. In each trial a human operator sampled an object pose by
shaking the object in a box and placing it upside down in the workspace.
We then took an RGB-D image with a Primsense Carmine 1.08, filled in the
image using inpainting [24], segmented the object using color background
subtraction, and formed a bounding box for the detected object. The grasp
planner under evaluation then planned a gripper pose and the YuMi executed
the grasp. Grasps were considered successful if the gripper held the object
after lifting, transporting, and shaking the object. (Top-Right) The training
set of 8 objects with adversarial geometric features such as smooth curved
surfaces and narrow openings for grasping known objects. (Bottom-Right)
The test set of 10 household objects not seen during training.

1) Success Rate: The percentage of grasps that were able
to lift, transport, and hold a desired object after shaking.

2) Precision: The success rate on grasps that are have an
estimated robustness higher than 50%. This measures
performance when the robot can decide not to grasp an
object, which could be useful when the robot has other
actions (e.g. pushing) available.

3) Robust Grasp Rate: The percentage of planned grasps
with an estimated robustness higher than 50%.

4) Planning Time: The time in seconds between receiving
an image and returning a planned grasp.

B. Datasets
Fig. 5 illustrates the physical object datasets used in the

benchmark:
1) Train: A validation set of 8 3D-printed objects with

adversarial geometric features such as smooth, curved
surfaces. This is used to set model parameters and to
evaluate performance on known objects.

2) Test: A set of 10 household objects similar to models in
Dex-Net 2.0 with various material, geometric, and spec-
ular properties. This is used to evaluate generalization
to unknown objects.

We chose objects based on geometric features under three
constraints: (a) small enough to fit within the workspace, (b)
weight less than 0.25kg, the payload of the YuMi, and (c)
height from the table greater than 1.0cm due to a limitation
of the silicone gripper fingertips.

We used four different GQ-CNN training datasets to study
the effect on performance, each with a 80-20 image-wise
training and validation split:

1) Adv-Synth: Synthetic images and grasps for the adver-
sarial objects in Train (189k datapoints).

2) Adv-Phys: Outcomes of executing random antipodal
grasps with random gripper height and friction coeffi-

Fig. 6: Receiver operating character-
istic comparing the performance of
learning models on Adv-Synth. The
GQ-CNN models all perform simi-
larly and have a significantly higher
true positive rate when compared to
ML-RF and ML-SVM.

Model Accuracy (%)

ML-SVM 89.7
ML-RF 90.5

GQ-S-Adv 97.8
GQ-L-Adv 97.8

GQ-Adv 98.1

TABLE II: The classification accu-
racy of each model on Adv-Synth.
We see that the GQ-CNN methods
have less than 2.5% test error while
ML-RF and ML-SVM are closer
to 10% error. Pretraining does not
appear to affect performance.

cient of µ = 0.5 in 50 physical trials per object in Train
(400 datapoints).

3) Dex-Net-Small: A subset of data from 150 models
sampled uniformly from Dex-Net 2.0 (670k datapoints).

4) Dex-Net-Large: Data from all 1500 models in Dex-Net
2.0 (6.7m datapoints).

C. Grasp Planning Methods Used for Comparison
We compared a number of grasp planning methods on

simulated and real data. We tuned the parameters of each
method based on synthetic classification performance and
physical performance on the training objects. All methods
other than point cloud registration used the antipodal grasp
sampling method described in Section V with the same set
of parameters to generate candidate grasps, and each planner
executes the highest-ranked grasp according to the method.
Additional details on the methods and their parameters can be
found in the supplemental file.

Image-based Grasp Quality Metrics (IGQ). We sampled
a set of force closure grasp candidates by finding antipodal
points on the object boundary [6] using edge detection and
ranked grasps by the distance from the center of the jaws
to the centroid of the object segmentation mask. We set the
gripper depth using a fixed offset from the depth of the grasp
center pixel.

Point-Cloud Registration (REG). We also compared with
grasp planning based on point cloud registration, a state-of-
the-art method for using precomputed grasps [13, 20]. We
first coarsely estimated the object instance and pose based on
the top 3 most similar synthetic images from Dex-Net 2.0,
where similarity is measured as distance between AlexNet
conv5 features [13, 34]. After coarse matching, we finetuned
the pose of the object in the table plane using Iterated
Closest Point [17, 27] with a point-to-plane cost. Finally, we
retrieved the most robust gripper pose from Dex-Net 2.0 for
the estimated object. The system had a median translational
error of 4.5mm a median rotational error of 3.5� in the table
plane for known objects.

Alternative Machine Learning Models (ML). We also
compared the performance of a Random Forest with 200

Experiments

Fig. 5: (Left) The experimental platform for benchmarking grasping with the
ABB YuMi. We registered the camera to the robot with a chessboard before
each experiment. In each trial a human operator sampled an object pose by
shaking the object in a box and placing it upside down in the workspace.
We then took an RGB-D image with a Primsense Carmine 1.08, filled in the
image using inpainting [24], segmented the object using color background
subtraction, and formed a bounding box for the detected object. The grasp
planner under evaluation then planned a gripper pose and the YuMi executed
the grasp. Grasps were considered successful if the gripper held the object
after lifting, transporting, and shaking the object. (Top-Right) The training
set of 8 objects with adversarial geometric features such as smooth curved
surfaces and narrow openings for grasping known objects. (Bottom-Right)
The test set of 10 household objects not seen during training.

1) Success Rate: The percentage of grasps that were able
to lift, transport, and hold a desired object after shaking.

2) Precision: The success rate on grasps that are have an
estimated robustness higher than 50%. This measures
performance when the robot can decide not to grasp an
object, which could be useful when the robot has other
actions (e.g. pushing) available.

3) Robust Grasp Rate: The percentage of planned grasps
with an estimated robustness higher than 50%.

4) Planning Time: The time in seconds between receiving
an image and returning a planned grasp.

B. Datasets
Fig. 5 illustrates the physical object datasets used in the

benchmark:
1) Train: A validation set of 8 3D-printed objects with

adversarial geometric features such as smooth, curved
surfaces. This is used to set model parameters and to
evaluate performance on known objects.

2) Test: A set of 10 household objects similar to models in
Dex-Net 2.0 with various material, geometric, and spec-
ular properties. This is used to evaluate generalization
to unknown objects.

We chose objects based on geometric features under three
constraints: (a) small enough to fit within the workspace, (b)
weight less than 0.25kg, the payload of the YuMi, and (c)
height from the table greater than 1.0cm due to a limitation
of the silicone gripper fingertips.

We used four different GQ-CNN training datasets to study
the effect on performance, each with a 80-20 image-wise
training and validation split:

1) Adv-Synth: Synthetic images and grasps for the adver-
sarial objects in Train (189k datapoints).

2) Adv-Phys: Outcomes of executing random antipodal
grasps with random gripper height and friction coeffi-

Fig. 6: Receiver operating character-
istic comparing the performance of
learning models on Adv-Synth. The
GQ-CNN models all perform simi-
larly and have a significantly higher
true positive rate when compared to
ML-RF and ML-SVM.

Model Accuracy (%)

ML-SVM 89.7
ML-RF 90.5

GQ-S-Adv 97.8
GQ-L-Adv 97.8

GQ-Adv 98.1

TABLE II: The classification accu-
racy of each model on Adv-Synth.
We see that the GQ-CNN methods
have less than 2.5% test error while
ML-RF and ML-SVM are closer
to 10% error. Pretraining does not
appear to affect performance.

cient of µ = 0.5 in 50 physical trials per object in Train
(400 datapoints).

3) Dex-Net-Small: A subset of data from 150 models
sampled uniformly from Dex-Net 2.0 (670k datapoints).

4) Dex-Net-Large: Data from all 1500 models in Dex-Net
2.0 (6.7m datapoints).

C. Grasp Planning Methods Used for Comparison
We compared a number of grasp planning methods on

simulated and real data. We tuned the parameters of each
method based on synthetic classification performance and
physical performance on the training objects. All methods
other than point cloud registration used the antipodal grasp
sampling method described in Section V with the same set
of parameters to generate candidate grasps, and each planner
executes the highest-ranked grasp according to the method.
Additional details on the methods and their parameters can be
found in the supplemental file.

Image-based Grasp Quality Metrics (IGQ). We sampled
a set of force closure grasp candidates by finding antipodal
points on the object boundary [6] using edge detection and
ranked grasps by the distance from the center of the jaws
to the centroid of the object segmentation mask. We set the
gripper depth using a fixed offset from the depth of the grasp
center pixel.

Point-Cloud Registration (REG). We also compared with
grasp planning based on point cloud registration, a state-of-
the-art method for using precomputed grasps [13, 20]. We
first coarsely estimated the object instance and pose based on
the top 3 most similar synthetic images from Dex-Net 2.0,
where similarity is measured as distance between AlexNet
conv5 features [13, 34]. After coarse matching, we finetuned
the pose of the object in the table plane using Iterated
Closest Point [17, 27] with a point-to-plane cost. Finally, we
retrieved the most robust gripper pose from Dex-Net 2.0 for
the estimated object. The system had a median translational
error of 4.5mm a median rotational error of 3.5� in the table
plane for known objects.

Alternative Machine Learning Models (ML). We also
compared the performance of a Random Forest with 200

All methods other than point cloud registration used the antipodal grasp sampling method
described in Section V with the same set of parameters to generate candidate grasps, and each
planner executes the highest-ranked grasp according to the method.

Experiments

• Metrics
• Success rate
• Precision: success rate for confident grasps
• Robust grasp rate: how many grasps were confident
• Planning time

• Baselines:
• Image-based grasp quality metrics
• Point cloud registration
• Alternative ML Models

• Results (Test Objects)
IGQ REG GQ-Adv-Phys GQ-Adv GQ-S GQ

Success Rate (%) 60±13 52±14 68±13 74±12 72±12 80±11

Precision (%) N/A N/A 68 87 92 100

Robust Grasp Rate (%) N/A N/A 100 30 48 58

Planning Time (sec) 1.8 3.4 0.7 0.7 0.8 0.8

TABLE IV: Performance of grasp planning methods on our grasping bench-
mark with the test dataset of 10 household objects with 95% confidence
intervals for the success rate. Each method was tested for 50 trials, and
details on the methods used for comparison can be found in Section VI-C.
GQ performs best in terms of success rate and precision, with 100% precision
(zero false positives among 29 positive classifications). Performance decreases
with smaller training datasets, but the GQ-CNN methods outperform the
image-based grasp quality metrics (IGQ) and point cloud registration (REG).

Fig. 7: (Left) The test set of 40 household objects used for evaluating the
generalization performance of the Dex-Net 2.0 grasp planner. The dataset
contains rigid, articulated, and deformable objects. (Right) The experimental
setup for order fulfillment with the ABB YuMi. The goal is to grasp and
transport three target objects to a shipping container (box on right).

found in the supplemental file. The CEM-augmented Dex-Net
2.0 grasp planner achieved 94% success and 99% precision
(68 successes out of 69 grasps classified as robust), and it
took an average of 2.5s to plan grasps.

H. Application: Order Fulfillment

To demonstrate the modularity of the Dex-Net 2.0 grasp
planner, we used it in an order fulfillment application with
the ABB YuMi. The goal was to grasp and transport a set
of three target objects to a shipping box in the presence of
three distractor objects when starting with the objects in a pile
on a planar worksurface, illustrated in Fig. 7. Since the Dex-
Net 2.0 grasp planner assumes singulated objects, the YuMi
first separated the objects using a policy learned from human
demonstrations mapping binary images to push locations [30].
When the robot detected an object with sufficient clearance
from the pile, it identified the object based on color and used
GQ-L-Adv to plan a robust grasp. The robot then transported
the object to either the shipping box or a reject box, depending
on whether or not the object was a distractor. The system
successfully placed the correct objects in the box on 4 out of
5 attempts and was successful in grasping on 93% of 27 total
attempts.

I. Failure Modes

Fig. 8 displays some common failures of the GQ-CNN
grasp planner. One failure mode occured when the RGB-D
sensor failed to measure thin parts of the object geometry,
making these regions seem accessible. A second type of failure
occured due to collisions with the object. It appears that the

Fig. 8: Four examples of failed grasps planned using the GQ-CNN from Dex-
Net 2.0. The most common failure modes were related to: (left) missing sensor
data for an important part of the object geometry, such as thin parts of the
object surface, and (right) collisions with the object that are misclassified as
robust.

network was not able to fully distinguish collision-free grasps
in narrow parts of the object geometry. This suggests that
performance could be improved with more accurate depth
sensing and using analytic methods to prune grasps in collsion.

VII. DISCUSSION AND FUTURE WORK

We developed a Grasp Quality Convolutional Neural Net-
work (GQ-CNN) architecture that predicts grasp robustness
from a point cloud and trained it on Dex-Net 2.0, a dataset
containing 6.7 million point clouds, parallel-jaw grasps, and
robust grasp metrics. In over 1,000 physical evaluations, we
found that the Dex-Net 2.0 grasp planner is as reliable and
3⇥ faster a method based on point cloud registration, and had
99% precision on a test set of 40 novel objects.

In future work, our goal is to approach 100% success on
known objects by using active learning to adaptively acquire
grasps using a policy initialized with a GQ-CNN. Additionally,
we plan to exend the method to grasp objects in clutter [15, 32]
by using simulated piles of rigid objects from Dex-Net and
by augmenting the grasping policy with an option to push and
separate objects when no robust grasp is available. We also
intend to extend the method to use point clouds from multiple
viewpoints and in grasping tasks with sequential structure,
such as regrasping for assembly. Furthermore, we plan to
release a subset of our code, dataset, and the trained GQ-CNN
weights to facilitate further research and comparisons.

ACKNOWLEDGMENTS

This research was performed at the AUTOLAB at UC Berkeley in affiliation with the Berkeley AI Research (BAIR)

Lab, the Real-Time Intelligent Secure Execution (RISE) Lab, and the CITRIS People and Robots (CPAR) Initiative. The

authors were supported in part by the U.S. National Science Foundation under NRI Award IIS-1227536: Multilateral

Manipulation by Human-Robot Collaborative Systems, the Department of Defense (DoD) through the National Defense

Science & Engineering Graduate Fellowship (NDSEG) Program, the Berkeley Deep Drive (BDD) Program, and by donations

from Siemens, Google, Cisco, Autodesk, IBM, Amazon Robotics, and Toyota Robotics Institute. Any opinions, findings,

and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the

views of the Sponsors. We thank our colleagues who provided helpful feedback, code, and suggestions, in particular Pieter

Abbeel, Ruzena Bajcsy, Brenton Chu, Roy Fox, David Gealy, Ed Johns, Sanjay Krishnan, Animesh Garg, Sergey Levine,

Pusong Li, Matt Matl, Stephen McKinley, Andrew Reardon, Vishal Satish, Sammy Staszak, and Nan Tian.

APPENDIX A
PARAMETERS OF GRAPHICAL MODEL

Our graphical model is illustrated in Fig. 2 and models
p(S,g,x,y) as the product of a state distribution p(x), an

Grasping System Evaluation

• The Dex-Net 2.0 grasp planner achieves 94% success and 99% precision
on a dataset of 40 novel household objects, some of which are articulated
or deformable. And it took an average of 2.5s to plan grasps.

IGQ REG GQ-Adv-Phys GQ-Adv GQ-S GQ

Success Rate (%) 60±13 52±14 68±13 74±12 72±12 80±11

Precision (%) N/A N/A 68 87 92 100

Robust Grasp Rate (%) N/A N/A 100 30 48 58

Planning Time (sec) 1.8 3.4 0.7 0.7 0.8 0.8

TABLE IV: Performance of grasp planning methods on our grasping bench-
mark with the test dataset of 10 household objects with 95% confidence
intervals for the success rate. Each method was tested for 50 trials, and
details on the methods used for comparison can be found in Section VI-C.
GQ performs best in terms of success rate and precision, with 100% precision
(zero false positives among 29 positive classifications). Performance decreases
with smaller training datasets, but the GQ-CNN methods outperform the
image-based grasp quality metrics (IGQ) and point cloud registration (REG).

Fig. 7: (Left) The test set of 40 household objects used for evaluating the
generalization performance of the Dex-Net 2.0 grasp planner. The dataset
contains rigid, articulated, and deformable objects. (Right) The experimental
setup for order fulfillment with the ABB YuMi. The goal is to grasp and
transport three target objects to a shipping container (box on right).

found in the supplemental file. The CEM-augmented Dex-Net
2.0 grasp planner achieved 94% success and 99% precision
(68 successes out of 69 grasps classified as robust), and it
took an average of 2.5s to plan grasps.

H. Application: Order Fulfillment

To demonstrate the modularity of the Dex-Net 2.0 grasp
planner, we used it in an order fulfillment application with
the ABB YuMi. The goal was to grasp and transport a set
of three target objects to a shipping box in the presence of
three distractor objects when starting with the objects in a pile
on a planar worksurface, illustrated in Fig. 7. Since the Dex-
Net 2.0 grasp planner assumes singulated objects, the YuMi
first separated the objects using a policy learned from human
demonstrations mapping binary images to push locations [30].
When the robot detected an object with sufficient clearance
from the pile, it identified the object based on color and used
GQ-L-Adv to plan a robust grasp. The robot then transported
the object to either the shipping box or a reject box, depending
on whether or not the object was a distractor. The system
successfully placed the correct objects in the box on 4 out of
5 attempts and was successful in grasping on 93% of 27 total
attempts.

I. Failure Modes

Fig. 8 displays some common failures of the GQ-CNN
grasp planner. One failure mode occured when the RGB-D
sensor failed to measure thin parts of the object geometry,
making these regions seem accessible. A second type of failure
occured due to collisions with the object. It appears that the

Fig. 8: Four examples of failed grasps planned using the GQ-CNN from Dex-
Net 2.0. The most common failure modes were related to: (left) missing sensor
data for an important part of the object geometry, such as thin parts of the
object surface, and (right) collisions with the object that are misclassified as
robust.

network was not able to fully distinguish collision-free grasps
in narrow parts of the object geometry. This suggests that
performance could be improved with more accurate depth
sensing and using analytic methods to prune grasps in collsion.

VII. DISCUSSION AND FUTURE WORK

We developed a Grasp Quality Convolutional Neural Net-
work (GQ-CNN) architecture that predicts grasp robustness
from a point cloud and trained it on Dex-Net 2.0, a dataset
containing 6.7 million point clouds, parallel-jaw grasps, and
robust grasp metrics. In over 1,000 physical evaluations, we
found that the Dex-Net 2.0 grasp planner is as reliable and
3⇥ faster a method based on point cloud registration, and had
99% precision on a test set of 40 novel objects.

In future work, our goal is to approach 100% success on
known objects by using active learning to adaptively acquire
grasps using a policy initialized with a GQ-CNN. Additionally,
we plan to exend the method to grasp objects in clutter [15, 32]
by using simulated piles of rigid objects from Dex-Net and
by augmenting the grasping policy with an option to push and
separate objects when no robust grasp is available. We also
intend to extend the method to use point clouds from multiple
viewpoints and in grasping tasks with sequential structure,
such as regrasping for assembly. Furthermore, we plan to
release a subset of our code, dataset, and the trained GQ-CNN
weights to facilitate further research and comparisons.

ACKNOWLEDGMENTS

This research was performed at the AUTOLAB at UC Berkeley in affiliation with the Berkeley AI Research (BAIR)

Lab, the Real-Time Intelligent Secure Execution (RISE) Lab, and the CITRIS People and Robots (CPAR) Initiative. The

authors were supported in part by the U.S. National Science Foundation under NRI Award IIS-1227536: Multilateral

Manipulation by Human-Robot Collaborative Systems, the Department of Defense (DoD) through the National Defense

Science & Engineering Graduate Fellowship (NDSEG) Program, the Berkeley Deep Drive (BDD) Program, and by donations

from Siemens, Google, Cisco, Autodesk, IBM, Amazon Robotics, and Toyota Robotics Institute. Any opinions, findings,

and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the

views of the Sponsors. We thank our colleagues who provided helpful feedback, code, and suggestions, in particular Pieter

Abbeel, Ruzena Bajcsy, Brenton Chu, Roy Fox, David Gealy, Ed Johns, Sanjay Krishnan, Animesh Garg, Sergey Levine,

Pusong Li, Matt Matl, Stephen McKinley, Andrew Reardon, Vishal Satish, Sammy Staszak, and Nan Tian.

APPENDIX A
PARAMETERS OF GRAPHICAL MODEL

Our graphical model is illustrated in Fig. 2 and models
p(S,g,x,y) as the product of a state distribution p(x), an

Failure Modes

IGQ REG GQ-Adv-Phys GQ-Adv GQ-S GQ

Success Rate (%) 60±13 52±14 68±13 74±12 72±12 80±11

Precision (%) N/A N/A 68 87 92 100

Robust Grasp Rate (%) N/A N/A 100 30 48 58

Planning Time (sec) 1.8 3.4 0.7 0.7 0.8 0.8

TABLE IV: Performance of grasp planning methods on our grasping bench-
mark with the test dataset of 10 household objects with 95% confidence
intervals for the success rate. Each method was tested for 50 trials, and
details on the methods used for comparison can be found in Section VI-C.
GQ performs best in terms of success rate and precision, with 100% precision
(zero false positives among 29 positive classifications). Performance decreases
with smaller training datasets, but the GQ-CNN methods outperform the
image-based grasp quality metrics (IGQ) and point cloud registration (REG).

Fig. 7: (Left) The test set of 40 household objects used for evaluating the
generalization performance of the Dex-Net 2.0 grasp planner. The dataset
contains rigid, articulated, and deformable objects. (Right) The experimental
setup for order fulfillment with the ABB YuMi. The goal is to grasp and
transport three target objects to a shipping container (box on right).

found in the supplemental file. The CEM-augmented Dex-Net
2.0 grasp planner achieved 94% success and 99% precision
(68 successes out of 69 grasps classified as robust), and it
took an average of 2.5s to plan grasps.

H. Application: Order Fulfillment

To demonstrate the modularity of the Dex-Net 2.0 grasp
planner, we used it in an order fulfillment application with
the ABB YuMi. The goal was to grasp and transport a set
of three target objects to a shipping box in the presence of
three distractor objects when starting with the objects in a pile
on a planar worksurface, illustrated in Fig. 7. Since the Dex-
Net 2.0 grasp planner assumes singulated objects, the YuMi
first separated the objects using a policy learned from human
demonstrations mapping binary images to push locations [30].
When the robot detected an object with sufficient clearance
from the pile, it identified the object based on color and used
GQ-L-Adv to plan a robust grasp. The robot then transported
the object to either the shipping box or a reject box, depending
on whether or not the object was a distractor. The system
successfully placed the correct objects in the box on 4 out of
5 attempts and was successful in grasping on 93% of 27 total
attempts.

I. Failure Modes

Fig. 8 displays some common failures of the GQ-CNN
grasp planner. One failure mode occured when the RGB-D
sensor failed to measure thin parts of the object geometry,
making these regions seem accessible. A second type of failure
occured due to collisions with the object. It appears that the

Fig. 8: Four examples of failed grasps planned using the GQ-CNN from Dex-
Net 2.0. The most common failure modes were related to: (left) missing sensor
data for an important part of the object geometry, such as thin parts of the
object surface, and (right) collisions with the object that are misclassified as
robust.

network was not able to fully distinguish collision-free grasps
in narrow parts of the object geometry. This suggests that
performance could be improved with more accurate depth
sensing and using analytic methods to prune grasps in collsion.

VII. DISCUSSION AND FUTURE WORK

We developed a Grasp Quality Convolutional Neural Net-
work (GQ-CNN) architecture that predicts grasp robustness
from a point cloud and trained it on Dex-Net 2.0, a dataset
containing 6.7 million point clouds, parallel-jaw grasps, and
robust grasp metrics. In over 1,000 physical evaluations, we
found that the Dex-Net 2.0 grasp planner is as reliable and
3⇥ faster a method based on point cloud registration, and had
99% precision on a test set of 40 novel objects.

In future work, our goal is to approach 100% success on
known objects by using active learning to adaptively acquire
grasps using a policy initialized with a GQ-CNN. Additionally,
we plan to exend the method to grasp objects in clutter [15, 32]
by using simulated piles of rigid objects from Dex-Net and
by augmenting the grasping policy with an option to push and
separate objects when no robust grasp is available. We also
intend to extend the method to use point clouds from multiple
viewpoints and in grasping tasks with sequential structure,
such as regrasping for assembly. Furthermore, we plan to
release a subset of our code, dataset, and the trained GQ-CNN
weights to facilitate further research and comparisons.

ACKNOWLEDGMENTS

This research was performed at the AUTOLAB at UC Berkeley in affiliation with the Berkeley AI Research (BAIR)

Lab, the Real-Time Intelligent Secure Execution (RISE) Lab, and the CITRIS People and Robots (CPAR) Initiative. The

authors were supported in part by the U.S. National Science Foundation under NRI Award IIS-1227536: Multilateral

Manipulation by Human-Robot Collaborative Systems, the Department of Defense (DoD) through the National Defense

Science & Engineering Graduate Fellowship (NDSEG) Program, the Berkeley Deep Drive (BDD) Program, and by donations

from Siemens, Google, Cisco, Autodesk, IBM, Amazon Robotics, and Toyota Robotics Institute. Any opinions, findings,

and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the

views of the Sponsors. We thank our colleagues who provided helpful feedback, code, and suggestions, in particular Pieter

Abbeel, Ruzena Bajcsy, Brenton Chu, Roy Fox, David Gealy, Ed Johns, Sanjay Krishnan, Animesh Garg, Sergey Levine,

Pusong Li, Matt Matl, Stephen McKinley, Andrew Reardon, Vishal Satish, Sammy Staszak, and Nan Tian.

APPENDIX A
PARAMETERS OF GRAPHICAL MODEL

Our graphical model is illustrated in Fig. 2 and models
p(S,g,x,y) as the product of a state distribution p(x), an

Thank you

