Manipulation

Saurabh Gupta

Today's Class

- Task, and challenges in manipulation
- Discussion about the role of learning for manipulation tasks
- DexNet 2.0 Paper

Example Tasks

- Tidying up a table
- Folding laundry
- Taking out keys from pocket
- Inserting key into lock
- Cutting a potato
- Scrubbing a dish

Tasks

- Programmed motion
- Compliant motion
- Structured pick-and-place
- Unstructured pick-and-place
- Mechanical assembly and task mechanics
- In-hand manipulation
- Non-prehensile manipulation
- Whole body manipulation

- Task-oriented grasping
- Manipulation of deformable objects
 - cloth, granular media

Actuation / End effector design

- Parallel jaw grippers
- Task specific end-effectors
 - Eg: Suction cups, remote Center Compliance for peg insertion
- Multi-finger hands
- Soft robots

• Over head camera / hand-in-eye camera, etc.

Image Source: L. Pinto, S. Song

- Over head camera / hand-in-eye camera, etc.
- Just visual sensing may not be enough, eg: consider inserting a key in cold

- Over head camera / hand-in-eye camera, etc.
- Just visual sensing may not be enough, eg: consider inserting a key in cold

- Over head camera / hand-in-eye camera, etc.
- Just visual sensing may not be enough, eg: consider inserting a key in cold
- Tactile sensing / haptic feedback may be crucial

Typical Robotics Pipeline

Manipulation

Planning

Discussion

- What, if any, are some ways in which classical techniques may fall short for manipulation tasks?
- Would it be possible to fix any of these via machine learning?

Manipulation is hard

- Actuators and sensors are far from mature
- Contact is hard to model
- High-dimensional systems can get hard to control
- Tasks are very varied

Dex-Net 2.0: Deep Learning to Plan Robust Grasps with Synthetic Point Clouds and Analytic Grasp Metrics

Jeffrey Mahler*, Jacky Liang*, Sherdil Niyaz*, Michael Laskey*, Richard Doan*, Xinyu Liu*, Juan Aparicio Ojea[†], and Ken Goldberg^{*} *Dept. of EECS, University of California, Berkeley Email: {jmahler, jackyliang, sniyaz, laskeymd, rdoan, xinyuliu, goldberg}@berkeley.edu Siemens Corporation, Corporate Technology Email: juan.aparicio@siemens.com

Initial State

Data Generation

Distribution	Description
$p(\gamma)$	truncated Gaussian distribution over friction coefficients
$p(\mathcal{O})$	discrete uniform distribution over 3D object models
$p(T_o \mathcal{O})$	continuous uniform distribution over the discrete set of
	object stable poses and planar poses on the table surface
$p(T_c)$	continuous uniform distribution over spherical coordinates
	for radial bounds $[r_{\ell}, r_u]$ and polar angle in $[0, \delta]$

$$\mathbf{y} = \alpha \hat{\mathbf{y}} + \epsilon$$

$$S(\mathbf{u}, \mathbf{x}) = \begin{cases} 1 & E_Q > \delta \text{ and } coll free(\mathbf{u}, \mathbf{x}) \\ 0 & otherwise \end{cases}$$

Data Generation

- Learn a Q-function, $Q_{\theta}(u, y)$
- CNN on pose aligned depth images
- Trained via supervised learning
- Test time:

•
$$\pi_{\theta}(\mathbf{y}) = \operatorname{argmax}_{\mathbf{u} \in \mathcal{C}} Q_{\theta}(\mathbf{u}, \mathbf{y})$$

• Optimized via CEM

- Input: Num rounds m, Num initial samples n, Num CEM samples c, Num GMM mixture k, Friction coef μ, Elite percentage γ, Robustness function Q_θ
 Result: u, most robust grasp
- 2 $\mathcal{U} \leftarrow$ uniform set of n antipodal grasps;

3 for
$$i = 1, ..., m$$
 do

4 | $\mathcal{E} \leftarrow \text{top } \gamma - \text{percentile of grasps ranked by } Q_{\theta};$

$$M \leftarrow \text{GMM fit to } \mathcal{E} \text{ with } k \text{ mixtures;}$$

 $G \leftarrow c \text{ iid samples from } M;$

7 end

5

8 return argmax
$$Q_{\theta}(\mathbf{u}, \mathbf{y});$$

 $\mathbf{u} \in \mathcal{U}$

Experiments (Offline)

Experiments

Experimental Setup

Training Objects (Adversarial)

Test Objects

All methods other than point cloud registration used the antipodal grasp sampling method described in Section V with the same set of parameters to generate candidate grasps, and each planner executes the highest-ranked grasp according to the method.

Experiments

- Metrics
 - Success rate
 - Precision: success rate for confident grasps
 - Robust grasp rate: how many grasps were confident
 - Planning time
- Baselines:
 - Image-based grasp quality metrics
 - Point cloud registration
 - Alternative ML Models
- Results (Test Objects)

	IGQ	REG	GQ-Adv-Phys	GQ-Adv	GQ-S	GQ
Success Rate (%)	60±13	52±14	68±13	74±12	72±12	80±11
Precision (%)	N/A	N/A	68	87	92	100
Robust Grasp Rate (%)	N/A	N/A	100	30	48	58
Planning Time (sec)	1.8	3.4	0.7	0.7	0.8	0.8

Grasping System Evaluation

Generalization Objects

• The Dex-Net 2.0 grasp planner achieves 94% success and 99% precision on a dataset of 40 novel household objects, some of which are articulated or deformable. And it took an average of 2.5s to plan grasps.

Failure Modes

Thank you