
Published as a conference paper at ICLR 2016

Many approaches in reinforcement learning make use of the recursive relationship known as the
Bellman equation:

Q⇡(st, at) = Ert,st+1⇠E

⇥
r(st, at) + � Eat+1⇠⇡ [Q

⇡(st+1, at+1)]
⇤

(2)

If the target policy is deterministic we can describe it as a function µ : S A and avoid the inner
expectation:

Qµ(st, at) = Ert,st+1⇠E [r(st, at) + �Qµ(st+1, µ(st+1))] (3)

The expectation depends only on the environment. This means that it is possible to learn Qµ off-
policy, using transitions which are generated from a different stochastic behavior policy �.

Q-learning (Watkins & Dayan, 1992), a commonly used off-policy algorithm, uses the greedy policy
µ(s) = argmaxa Q(s, a). We consider function approximators parameterized by ✓Q, which we
optimize by minimizing the loss:

L(✓Q) = Est⇠⇢� ,at⇠�,rt⇠E

h�
Q(st, at|✓Q)� yt

�2i
(4)

where
yt = r(st, at) + �Q(st+1, µ(st+1)|✓Q). (5)

While yt is also dependent on ✓Q, this is typically ignored.

The use of large, non-linear function approximators for learning value or action-value functions has
often been avoided in the past since theoretical performance guarantees are impossible, and prac-
tically learning tends to be unstable. Recently, (Mnih et al., 2013; 2015) adapted the Q-learning
algorithm in order to make effective use of large neural networks as function approximators. Their
algorithm was able to learn to play Atari games from pixels. In order to scale Q-learning they intro-
duced two major changes: the use of a replay buffer, and a separate target network for calculating
yt. We employ these in the context of DDPG and explain their implementation in the next section.

3 ALGORITHM

It is not possible to straightforwardly apply Q-learning to continuous action spaces, because in con-
tinuous spaces finding the greedy policy requires an optimization of at at every timestep; this opti-
mization is too slow to be practical with large, unconstrained function approximators and nontrivial
action spaces. Instead, here we used an actor-critic approach based on the DPG algorithm (Silver
et al., 2014).

The DPG algorithm maintains a parameterized actor function µ(s|✓µ) which specifies the current
policy by deterministically mapping states to a specific action. The critic Q(s, a) is learned using
the Bellman equation as in Q-learning. The actor is updated by following the applying the chain rule
to the expected return from the start distribution J with respect to the actor parameters:

r✓µJ ⇡ Est⇠⇢�

⇥
r✓µQ(s, a|✓Q)|s=st,a=µ(st|✓µ)

⇤

= Est⇠⇢�

⇥
raQ(s, a|✓Q)|s=st,a=µ(st)r✓µµ(s|✓µ)|s=st

⇤ (6)

Silver et al. (2014) proved that this is the policy gradient, the gradient of the policy’s performance 2.

As with Q learning, introducing non-linear function approximators means that convergence is no
longer guaranteed. However, such approximators appear essential in order to learn and generalize
on large state spaces. NFQCA (Hafner & Riedmiller, 2011), which uses the same update rules as
DPG but with neural network function approximators, uses batch learning for stability, which is
intractable for large networks. A minibatch version of NFQCA which does not reset the policy at
each update, as would be required to scale to large networks, is equivalent to the original DPG,
which we compare to here. Our contribution here is to provide modifications to DPG, inspired by
the success of DQN, which allow it to use neural network function approximators to learn in large
state and action spaces online. We refer to our algorithm as Deep DPG (DDPG, Algorithm 1).

2In practice, as in commonly done in policy gradient implementations, we ignored the discount in the state-
visitation distribution ⇢� .

3

