
Published as a conference paper at ICLR 2016

Algorithm 1 DDPG algorithm

Randomly initialize critic network Q(s, a|✓Q) and actor µ(s|✓µ) with weights ✓Q and ✓µ.
Initialize target network Q0 and µ0 with weights ✓Q

0 ✓Q, ✓µ
0 ✓µ

Initialize replay buffer R
for episode = 1, M do

Initialize a random process N for action exploration
Receive initial observation state s1
for t = 1, T do

Select action at = µ(st|✓µ) +Nt according to the current policy and exploration noise
Execute action at and observe reward rt and observe new state st+1

Store transition (st, at, rt, st+1) in R
Sample a random minibatch of N transitions (si, ai, ri, si+1) from R
Set yi = ri + �Q0(si+1, µ0(si+1|✓µ

0
)|✓Q0

)
Update critic by minimizing the loss: L = 1

N

P
i(yi �Q(si, ai|✓Q))2

Update the actor policy using the sampled policy gradient:

r✓µJ ⇡ 1

N

X

i

raQ(s, a|✓Q)|s=si,a=µ(si)r✓µµ(s|✓µ)|si

Update the target networks:
✓Q

0
 ⌧✓Q + (1� ⌧)✓Q

0

✓µ
0
 ⌧✓µ + (1� ⌧)✓µ

0

end for

end for

high dimensional tasks such as gripper, tasks involving contacts such as puck striking (canada)
and locomotion tasks such as cheetah (Wawrzyński, 2009). In all domains but cheetah the actions
were torques applied to the actuated joints. These environments were simulated using MuJoCo
(Todorov et al., 2012). Figure 1 shows renderings of some of the environments used in the task (the
supplementary contains details of the environments and you can view some of the learned policies
at https://goo.gl/J4PIAz).

In all tasks, we ran experiments using both a low-dimensional state description (such as joint angles
and positions) and high-dimensional renderings of the environment. As in DQN (Mnih et al., 2013;
2015), in order to make the problems approximately fully observable in the high dimensional envi-
ronment we used action repeats. For each timestep of the agent, we step the simulation 3 timesteps,
repeating the agent’s action and rendering each time. Thus the observation reported to the agent
contains 9 feature maps (the RGB of each of the 3 renderings) which allows the agent to infer veloc-
ities using the differences between frames. The frames were downsampled to 64x64 pixels and the
8-bit RGB values were converted to floating point scaled to [0, 1]. See supplementary information
for details of our network structure and hyperparameters.

We evaluated the policy periodically during training by testing it without exploration noise. Figure
2 shows the performance curve for a selection of environments. We also report results with compo-
nents of our algorithm (i.e. the target network or batch normalization) removed. In order to perform
well across all tasks, both of these additions are necessary. In particular, learning without a target
network, as in the original work with DPG, is very poor in many environments.

Surprisingly, in some simpler tasks, learning policies from pixels is just as fast as learning using the
low-dimensional state descriptor. This may be due to the action repeats making the problem simpler.
It may also be that the convolutional layers provide an easily separable representation of state space,
which is straightforward for the higher layers to learn on quickly.

Table 1 summarizes DDPG’s performance across all of the environments (results are averaged over
5 replicas). We normalized the scores using two baselines. The first baseline is the mean return
from a naive policy which samples actions from a uniform distribution over the valid action space.
The second baseline is iLQG (Todorov & Li, 2005), a planning based solver with full access to the

5

https://goo.gl/J4PIAz

