
Off-Policy Deep Reinforcement Learning without Exploration

sible candidate actions with high similarity to the batch,
and then selects the highest valued action through a learned
Q-network. Furthermore, we bias this value estimate to
penalize rare, or unseen, states through a modification to
Clipped Double Q-learning (Fujimoto et al., 2018). As a
result, BCQ learns a policy with a similar state-action visi-
tation to the data in the batch, as inspired by the theoretical
benefits of its tabular counterpart.

To maintain the notion of batch-constraint, we define a sim-
ilarity metric by making the assumption that for a given
state s, the similarity between (s, a) and the state-action
pairs in the batch B can be modelled using a learned state-
conditioned marginal likelihood PG

B (a|s). In this case, it
follows that the policy maximizing PG

B (a|s) would min-
imize the error induced by extrapolation from distant, or
unseen, state-action pairs, by only selecting the most likely
actions in the batch with respect to a given state. Given
the difficulty of estimating PG

B (a|s) in high-dimensional
continuous spaces, we instead train a parametric generative
model of the batch G!(s), which we can sample actions
from, as a reasonable approximation to argmaxa P

G
B (a|s).

For our generative model we use a conditional variational
auto-encoder (VAE) (Kingma & Welling, 2013; Sohn et al.,
2015), which models the distribution by transforming an un-
derlying latent space1. The generative model G! , alongside
the value function Q✓, can be used as a policy by sampling n
actions from G! and selecting the highest valued action ac-
cording to the value estimate Q✓. To increase the diversity of
seen actions, we introduce a perturbation model ⇠�(s, a,�),
which outputs an adjustment to an action a in the range
[��,�]. This enables access to actions in a constrained
region, without having to sample from the generative model
a prohibitive number of times. This results in the policy ⇡:

⇡(s) = argmax
ai+⇠�(s,ai,�)

Q✓(s, ai + ⇠�(s, ai,�)),

{ai ⇠ G!(s)}ni=1.
(11)

The choice of n and � creates a trade-off between an im-
itation learning and reinforcement learning algorithm. If
� = 0, and the number of sampled actions n = 1, then the
policy resembles behavioral cloning and as �! amax�amin
and n!1, then the algorithm approaches Q-learning, as
the policy begins to greedily maximize the value function
over the entire action space.

The perturbation model ⇠� can be trained to maximize
Q✓(s, a) through the deterministic policy gradient algorithm
(Silver et al., 2014) by sampling a ⇠ G!(s):

� argmax
�

X

(s,a)2B

Q✓(s, a+ ⇠�(s, a,�)). (12)

To penalize uncertainty over future states, we modify
1See the Supplementary Material for an introduction to VAEs.

Algorithm 1 BCQ
Input: Batch B, horizon T , target network update rate
⌧ , mini-batch size N , max perturbation �, number of
sampled actions n, minimum weighting �.
Initialize Q-networks Q✓1 , Q✓2 , perturbation network ⇠�,
and VAE G! = {E!1 , D!2}, with random parameters ✓1,
✓2, �, !, and target networks Q✓0

1
, Q✓0

2
, ⇠�0 with ✓01

✓1, ✓02 ✓2, �0 �.
for t = 1 to T do

Sample mini-batch of N transitions (s, a, r, s0) from B
µ,� = E!1(s, a), ã = D!2(s, z), z ⇠ N (µ,�)
! argmin!

P
(a� ã)2 +DKL(N (µ,�)||N (0, 1))

Sample n actions: {ai ⇠ G!(s0)}ni=1

Perturb each action: {ai = ai + ⇠�(s0, ai,�)}ni=1

Set value target y (Eqn. 13)
✓ argmin✓

P
(y �Q✓(s, a))2

� argmax�
P

Q✓1(s, a+ ⇠�(s, a,�)), a ⇠ G!(s)
Update target networks: ✓0i ⌧✓ + (1� ⌧)✓0i
�0 ⌧�+ (1� ⌧)�0

end for

Clipped Double Q-learning (Fujimoto et al., 2018), which
estimates the value by taking the minimum between two Q-
networks {Q✓1 , Q✓2}. Although originally used as a coun-
termeasure to overestimation bias (Thrun & Schwartz, 1993;
Van Hasselt, 2010), the minimum operator also penalizes
high variance estimates in regions of uncertainty, and pushes
the policy to favor actions which lead to states contained in
the batch. In particular, we take a convex combination of
the two values, with a higher weight on the minimum, to
form a learning target which is used by both Q-networks:

r+�max
ai


� min

j=1,2
Q✓0

j
(s0, ai) + (1� �) max

j=1,2
Q✓0

j
(s0, ai)

�

(13)
where ai corresponds to the perturbed actions, sampled
from the generative model. If we set � = 1, this update
corresponds to Clipped Double Q-learning. We use this
weighted minimum as the constrained updates produces less
overestimation bias than a purely greedy policy update, and
enables control over how heavily uncertainty at future time
steps is penalized through the choice of �.

This forms Batch-Constrained deep Q-learning (BCQ),
which maintains four parametrized networks: a generative
model G!(s), a perturbation model ⇠�(s, a), and two Q-
networks Q✓1(s, a), Q✓2(s, a). We summarize BCQ in Al-
gorithm 1. In the following section, we demonstrate BCQ
results in stable value learning and a strong performance in
the batch setting. Furthermore, we find that only a single
choice of hyper-parameters is necessary for a wide range of
tasks and environments.

saurabhgupta
Highlight

