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Figure 2. We evaluate BCQ and several baselines on the experi-
ments from Section 3.1, as well as the imperfect demonstrations
task. The shaded area represents half a standard deviation. The
bold black line measures the average return of episodes contained
in the batch. Only BCQ matches or outperforms the performance
of the behavioral policy in all tasks.

5. Experiments

To evaluate the effectiveness of Batch-Constrained deep
Q-learning (BCQ) in a high-dimensional setting, we focus
on MuJoCo environments in OpenAI gym (Todorov et al.,
2012; Brockman et al., 2016). For reproducibility, we make
no modifications to the original environments or reward
functions. We compare our method with DDPG (Lillicrap
et al., 2015), DQN (Mnih et al., 2015) using an indepen-
dently discretized action space, a feed-forward behavioral
cloning method (BC), and a variant with a VAE (VAE-BC),
using G!(s) from BCQ. Exact implementation and experi-
mental details are provided in the Supplementary Material.

We evaluate each method following the three experiments
defined in Section 3.1. In final buffer the off-policy agents
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Figure 3. We examine the value estimates of BCQ, along with
DDPG and DQN on the experiments from Section 3.1 in the
Hopper-v1 environment. Each individual trial is plotted, with
the mean in bold. An estimate of the true value of BCQ, evaluated
by Monte Carlo returns, is marked by a dotted line. Unlike the state
of the art baselines, BCQ exhibits a highly stable value function
in each task. Graphs for the other environments and imperfect
demonstrations task can be found in the Supplementary Material.

learn from the final replay buffer gathered by training a
DDPG agent over a million time steps. In concurrent the
off-policy agents learn concurrently, with the same replay
buffer, as the behavioral DDPG policy, and in imitation, the
agents learn from a dataset collected by an expert policy.
Additionally, to study the robustness of BCQ to noisy and
multi-modal data, we include an imperfect demonstrations
task, in which the agents are trained with a batch of 100k
transitions collected by an expert policy, with two sources of
noise. The behavioral policy selects actions randomly with
probability 0.3 and with high exploratory noise N (0, 0.3)
added to the remaining actions. The experimental results
for these tasks are reported in Figure 2. Furthermore, the
estimated values of BCQ, DDPG and DQN, and the true
value of BCQ are displayed in Figure 3.

Our approach, BCQ, is the only algorithm which succeeds
at all tasks, matching or outperforming the behavioral policy
in each instance, and outperforming all other agents, besides
in the imitation learning task where behavioral cloning un-
surprisingly performs the best. These results demonstrate
that our algorithm can be used as a single approach for both
imitation learning and off-policy reinforcement learning,
with a single set of fixed hyper-parameters. Furthermore,
unlike the deep reinforcement learning algorithms, DDPG
and DQN, BCQ exhibits a highly stable value function in
the presence of off-policy samples, suggesting extrapolation
error has been successfully mitigated through the batch-
constraint. In the imperfect demonstrations task, we find
that both deep reinforcement learning and imitation learn-
ing algorithms perform poorly. BCQ, however, is able to
strongly outperform the noisy demonstrator, disentangling
poor and expert actions. Furthermore, compared to current
deep reinforcement learning algorithms, which can require
millions of time steps (Duan et al., 2016; Henderson et al.,
2017), BCQ attains a high performance in remarkably few
iterations. This suggests our approach effectively leverages
expert transitions, even in the presence of noise.


