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Abstract—This paper describes a system for visually guided
autonomous navigation of under-canopy farm robots. Low-cost
under-canopy robots can drive between crop rows under the
plant canopy and accomplish tasks that are infeasible for over-
the-canopy drones or larger agricultural equipment. However,
autonomously navigating them under the canopy presents a
number of challenges: unreliable GPS and LiDAR, high cost
of sensing, challenging farm terrain, clutter due to leaves and
weeds, and large variability in appearance over the season and
across crop types. We address these challenges by building a
modular system that leverages machine learning for robust and
generalizable perception from monocular RGB images from
low-cost cameras, and model predictive control for accurate
control in challenging terrain. Our system, CropFollow, is able
to autonomously drive 485 meters per intervention on average,
outperforming a state-of-the-art LiDAR based system (286 meters
per intervention) in extensive field testing spanning over 25 km.

I. INTRODUCTION

This paper describes the design of a visually-guided naviga-
tion system for compact, low-cost, under-canopy agricultural
robots for commodity row-crops (corn, soybean, sugarcane
etc), such as that shown in Figure 1. Our system, called
CropFollow, uses monocular RGB images from an on-board
front-facing camera to steer the robot to autonomously traverse
in between crop rows in harsh, visually cluttered, uneven,
and variable real-world agricultural fields. Robust and reli-
able autonomous navigation of such under-canopy robots has
the potential to enable a number of practical and scientific
applications: High-throughput plant phenotyping [43, 37, 68,
66, 58, 25], ultra-precise pesticide treatments, mechanical
weeding [41], plant manipulation [17, 61], and cover crop
planting [64, 62] Such applications are not possible with over-
canopy larger tractors and UAVs, and are crucial for increasing
agricultural sustainability [55, 22].

Autonomous row-following is a foundational capability for
robots that need to navigate between crop rows in agricul-
tural fields. Such robots cannot rely on RTK (Real-Time
Kinematic)-GPS [21] based methods which are used for over-
the-canopy autonomy (e.g. for drones, tractors, and combine
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Fig. 1: CropFollow is an autonomous navigation system for under-
canopy agriculture robots. It uses RGB images from a front-facing
camera to output steering commands to drive the robot in crop rows.

harvesters) because of GPS signal attenuation and multi-
path errors. The under-canopy row-following task consists of
detecting and following the rows of crop, by determining the
distance from the rows and the angle relative to the row, and
using this to track specified row-relative pose. In a typical
80 acre land-parcel in row-crops, the rows are about 400
meter long and full of visual clutter. The crop rapidly grows
during the growing season, rendering a constantly chang-
ing visual environment. Therefore, autonomous navigation of
under-canopy robots has remained a challenging and open
problem. LiDAR is known to work under the canopy and
can return geometric information [32]. However, LiDAR is
costly, and it does not capture semantic information. For
example, LiDAR cannot directly distinguish whether observed
occupancy corresponds to untraversable obstacles (actual crop
plant stalk), or traversable obstacles (hanging leaves, weeds,
uneven terrain). This fundamentally limits LiDAR based meth-
ods from estimating distance and angle from the row, leading
to low robustness of autonomy, as reported by low distance-
between-interventions [32]. This motivates our use of richer
sensing and lower-cost modalities in the form of RGB images.

Using RGB images for under-canopy navigation however
has proven to be non-trivial and has become a primary
bottleneck for under-canopy robotics. Importance of semantics
precludes the use of traditional methods that infer geometry
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from monocular RGB image streams [45, 23]. Visual vari-
ability during the day and the season limits heuristic based
crop-lane detection algorithms, and visual similarity results
in positional drift with SLAM algorithms[67]. It is clear
therefore, that the high variability and clutter in the agricultural
environment necessitates the use of learning. However, the
lack of large-scale datasets, the dif�culty of collecting �eld
data, lack of a clear reward signal, and the infeasibility of
building a simulator for this task, makes it challenging to
employ machine learning.

Our contribution in this paper is a �eld-validated modular
vision based crop-row following system to overcome the above
challenges. We term this system CropFollow, as it provides
the foundational row-following capability to small, low-cost
robots. Our system decouples perception and control. The
perception system uses monocular RGB image from the on-
board camera to estimate row-relative robot pose. It does
so by directly estimating the robot's relative heading to the
row (measured as the angle the robot makes with the row
direction), and robot's placement in row (measured as the ratio
of distance from the left row to inter-row separation). These
data are fused with inertial measurements using a Bayesian
sensor fusion system (Extended Kalman �lter (EKF)), and
utilized to generate row-following control in terms of desired
angle and speed for staying in the center of the row using a
nonlinear robust controller (Model Predictive Control (MPC)).
The ability to directly predict relative heading and distance
from monocular RGB images is one key novelty of our
approach, and has key ef�ciency and robustness bene�ts: the
approach avoids having to �rst detect the plants (which can be
many) [27], or explicitly segmenting the ground from plants
(which is highly challenging with more clutter in the envi-
ronment) [67]. Our presented system is able to successfully
traverse crop rows regardless of the crop's growth stage. In
�eld trials of about 25 kilometers, our system required fewer
interventions than a LiDAR based system [63](485 meters
per interventionvs. 286 m), while at the same time cutting
down sensing cost by 50� . In of�ine experiments, we �nd
that the proposed perception models generalize well to new
crops. These results clearly establish that our modular visual
navigation system enables vision based autonomy for under-
canopy �eld robots.

II. RELATED WORK

Autonomous Navigation in Agricultural Fields. GPS, alone
and in combination with IMU and RTK corrections, is
commonly used for outdoor navigation for tractors and
over-canopy agricultural robots [52, 2, 3, 70, 37, 18, 36].
Under-canopy navigation is concerned with autonomous row-
following between the rows of crops. In such under-canopy
environments, GPS suffers from signi�cant multipath errors
and signal attenuation under the canopy [32], furthermore
RTK correction signals aren't always available. As an alterna-
tive, LiDAR data along with heuristics based algorithms for
row-following have been used for under-canopy and orchard
navigation [33, 6, 62, 32, 63]. However, LiDAR is costly,

sensitivity to noise, and cannot sense semantic or contextual
information.

This has motivated vision-based navigation systems. Past
work in vision-based agricultural navigation can be classi�ed
into over the canopy [72, 26, 69, 34, 4], under-canopy in
orchards [59, 51, 7, 1] and under-canopy in row crops and
horticultural crops [67, 27]. Vanishing lines based heuristics
was commonly used in these works. In orchards and over-
canopy visual navigation setting crop rows are clearly visible,
which makes heuristic based line �tting possible. However,
these algorithms do not directly apply to under-canopy naviga-
tion in commodity crops such as corn and soybean (the focus
of this paper) where the row-spacing is much tighter (10�
smaller than orchards), there is a high degree of visual clutter,
complete and frequent occlusion of the camera by leaves,
presence of weeds, crop residue on the ground, and changing
visual appearance as the crop grows (see Figure 4 and Figure 7
for examples). Incidentally, corn and soybean acerage is atleast
10� larger than orchards. Recent visual servoing with RGB-D
has been used for orchar navigation [1], however this approach
will not work in corn-soybean canopies due to visual clutter
and small-size of crops earlier in the growing season.
Classical Navigation. Navigation in classical mobile
robotics [60, 56] follows a modular approach with perception
(simultaneous localization and mapping (SLAM)), path
planning relative to generated map, and trajectory tracking
control. There are various successful SLAM techniques
for this in structured and static environments such as in
urban self-driving and indoor navigation. However, geometric
reconstruction and localization in deformable and dynamic
under-canopy agriculture environments is challenging.
Furthermore, geometric approaches equate traversability with
free space. While generally true, in off-road �eld settings this
is not true (short weeds are �ne to run over, hanging plant
leaves can be run into), and necessitates the use of learning.
Visual-inertial odometry (VIO) based approaches (e.g. [50])
that are common in other outdoor navigation tasks are not
useful here without a pre-built map, or GPS waypoints to
close the loop and prevent drift (see Figure 8), or navigation
in non-straight rows.
Learned Navigation.Researchers have used machine learning
for navigation and locomotion in situations where heuristics
have failed. Learning has been used in different ways: [28, 73,
65] learn high-level semantic cues and statistical regularities
for navigation, [39, 19] use learning to provide robustness to
actuation noise for path following, while [24, 54, 47, 53, 8]
rely on learning to reduce or eliminate the dependence on
expensive sensors for collision-free local navigation. Our work
falls into this last category. Our use of learning not only
eliminates dependence on LiDAR, but surpasses its perfor-
mance through better discrimination between traversible and
intraversible areas by use of learning on camera images.
Research in this last category can be further distinguished
based on the policy design and supervision used for training.
Given the infeasibility of simulation, challenging terrain, lack
of a reliable unsupervised self-supervision signal (as used



Fig. 2: CropFollow Overview. We use a convolutional network to output robot heading and placement in row. This is used to compute the
row center which is used as a reference trajectory. A model predictive controller converts reference trajectories to angular velocity commands.

in BADGR [35]), and dif�culty of large-scale �eld exper-
iments, renders reinforcement learning, imitation learning,
and self-supervision based methods infeasible for our task
[54, 47, 47, 24, 35, 49, 30]. Also, lack of large-scale datasets
for training has prevented the use of machine learning (over-
canopy datasetse.g. [15, 48], and urban self-driving datasets
e.g. [10] exist, but aren't useful for under-canopy training).
Therefore, we employ a modular approach [5, 44, 11, 42] and
use supervised learning for training the perception module.
Eliminating trial-and-error from learning improves sample ef�-
ciency, and the use of an analytical low-level controller allows
easy generalization over varying terrains. Our contribution is in
the design and experimental validation of a modular autonomy
system in unique, challenging agricultural settings.

Learned Lane Following. Crop row following is similar to
lane following in context of self-driving cars, however is much
more challenging given no clear lane markings and extreme
amounts of clutter. Past lane following works use reactive
control based on traditional vanishing line estimation [71].
However, vanishing line estimation is brittle. Consequently,
recent works employ learning. [9] trained a vanishing point
estimation network from an urban driving dataset with clearly
visible lanes. Such lanes are not directly visible in our cluttered
under-canopy environments (See Figure 7 and Figure 9). Thus,
those models won't work, as is, in our setting. Second, they
only output the vanishing point which only tells us about the
heading and not the distance ratio (see Appendix Section IV-
E). Our method bypasses having to estimate the vanishing
point and directly outputs all the necessary information re-
quired for the robot to navigate in under-canopy. Therefore,
our method is the most direct and ef�cient way to achieve
under-canopy row following. [40, 46, 74] predict semantic
segmentation of the scene to estimate lane boundaries, while
[13, 57, 14] employ end-to-end learning to directly output
control commands via classi�cation or regression). The former

techniques require �ne-grained pixel level annotations for
training, and real-time inference is computationally expensive.
End-to-end control is impractical in our setting as mentioned
above. [29] learns to predict the location of lane in the image
to estimate distance but does not predict heading and distance
directly. [12] show that CNNs can be trained to predict driving
affordances in uncluttered simulation environments where lane
markings are clearly visible. In contrast, our work provides
substantial experimental results that demonstrate that CNN
based state estimators can lead to high-performing autonomous
navigation systems capable of operating in the wild cluttered
under-canopy �elds, surpassing the current default practice of
using a LiDAR.

Closest to our work, Guet al. [27] use learning to detect
corn stalks and �t lines. This approach suffers when corn stalks
are not visible, and has not been validated in real corn �elds.
We follow an implicit approach to directly estimate the states
(row-relative heading and offset). This allows us to train a
machine learning system that is robust to these challenges, as
shown by our extensive in-�eld validation.

III. SYSTEM DESIGN

Figure 2 shows an overview of our presented system. Images
from on-board RGB camera on the robot are processed through
a convolutional network to predict robot heading� , and rela-
tive placementd between crop rows. This relative placement is
converted into the robot's distance from the left and the right
crop rows by multiplying with the lane width. These heading
and distance predictions are �ltered using a Bayesian �lter
(we use the Extended Kalman Filter) that optionally also fuses
them with high-frequency input from an inertial measurement
unit. The �ltered heading and distances are used to generate a
course correcting reference path in the robot coordinate frame.
A model predictive controller is used to compute angular
velocity commands to achieve this reference path. A lower-



Fig. 3: Our method uses the robot's heading,� and ratio of distance
from the left and the right crop row,d = dL =(dL + dR ), as the
intermediate representation between perception and planning.

level proportional–integral–derivative (PID) controller is used
to track the commanded angular velocity.

In this section, we describe the robot platform, the CNN
architecture, the Extended Kalman Filter, and the model pre-
dictive controller. We describe the data collection and ground
truth generation procedure in Section IV.
Robot Platform. TerraSentia is an ultra-compact 4-wheeled
skid-steering mobile robot designed to drive through �elds and
collect data. It has a Raspberry Pi 3 on-board for lower-level
motor control and an Intel i7 NUC for data processing and
navigation. Note that our unit had no discrete GPU, so the
integrated Intel GPU is used for model inference. This robotic
system is equipped with various sensors but only 4 are relevant
to this paper. There is a dedicated GPS module that determines
baseline autonomous driving performance (when GPS signal is
reliable). The current LiDAR-based autonomy is fueled by the
2D horizontal-scanning LiDAR (Hokuyu UST-10LX) and a 6
DOF Inertial Measurement Unit (IMU). Finally, our approach
utilizes only the forward facing,720p at 30 fps monocular
camera sensor (OV2710) and an IMU. We note speci�cally
that since LiDAR is not utilized in our presented visual system,
no explicit real-time depth signal is available to the model.
Perception Model. We choose a learning approach due to
its superior generalizability compared to color-based seg-
mentation navigation proposed by previous works. Figure 7
shows the classical system's failure to segment the lane in
common late stage data. CropFollow's perception model takes
in 320� 240 RGB images and outputs the robot heading (in
degrees) and its relative placement in the crop row. Figure 3
shows how the heading and the relative placement is de�ned.
Heading� is the angle of the robot relative to crop rows. The
relative distanced is the ratio of the distance to the left of the
row to the lane width,i.e. d = dL

dL + dR
, wheredL anddR are

the distances to left and right crop rows.
The perception model uses a ResNet-18 [31] backbone that

has been pretrained on ImageNet [20]. We truncate ResNet-18
right before the average-pooling layer, and add in an additional
convolutional layer, a fully connected layer, dropout, and
�nal prediction layer. The �nal prediction layer outputs the
heading� , and the distance ratiod. We found that independent
networks to predict heading and distance ratio worked better
than a single joint network.

Fig. 4: Sample images from the collected dataset.

IMU Fusion with Extended Kalman Filter. An Extended
Kalman Filter [16, 21, 56] was used to reduce the effect of
uncertainties in distance and heading estimations by fusing the
inertial data with the vision data. We useds = ( dL dR � )T

as the state. Statesk evolves over time as per the prediction
function f (sk � 1; uk � 1) (derived using the robot's kinematics,
see supplementary). Heresk � 1 is the state at the previous
time step, anduk � 1 is the linear and angular velocity at the
previous time step. Robot's linear speedv and angular speed!
are calculated from wheel encoders, and IMU respectively. We
assume additive zero-mean Gaussian process and measurement
noise. As we directly observes, the measurement function
is an identity function. Output from the CNN is used in the
update step. More details about the form of the prediction
function, and co-variances of the Gaussian noise are provided
in the supplementary material.
Model Predictive Controller. We used a non-linear Model
Predictive Controller (MPC) to generate angular speed com-
mands to the robot given the reference path to be followed,
as shown in Figure 2 [37, 36]. MPC uses the fused output
statess = ( dL dR � )T from the EKF, the Unicycle kinematic
model (see supplementary) of the robot and reference path,
which is a straight line through the center of the lane, to solve
a constrained optimization problem with the minimum and
maximum curvature radius as the constraints. The output is a
path de�ned in terms of the curvature� , which determines the
angular velocity! = � v wherev is the linear velocity. The
angular speed for the �rst point in the output path is applied
and the optimization process is repeated. A PID controller
is used to maintain the commanded angular speed, based on
feedback from IMU's yaw angular speed.

IV. DATA COLLECTION AND GROUND TRUTHING

Given lack of any under-canopy agriculture datasets, we
collected a large dataset by driving the TerraSentia robot under
the canopy. We manually operated the robot in19 corn and
4 soybean �elds across Illinois and Indiana, and collected
time-series data from the front-facing RGB camera, LiDAR,
and IMU. We collected2:7 hours of corn data and1:2 hours
of soybean data, and made sure to collect data for different
growth stages. We also included data where the robot was
driven in a zigzag manner. This was done to expose the



perception models to a broader distribution of data that may be
experienced during autonomous runs. Figures 4 and 12 shows
sample corn and soybean images from the dataset. We note the
variability in appearance, occlusion, challenging illumination
(shadows, low-light under the canopy), challenging terrain, and
leafy plants. This raw data and a subset of annotations will be
made available upon acceptance.

Ground Truthing. To train our perception model from
Section III, we need labels for robot heading and the ratio of
the distance from the left and the right crop rows. Preliminary
investigation of using LiDAR for extracting this information
for training wasn't fruitful. Hence, we gathered human labels.

However, asking humans for such geometric labels is not
easy. Unlike semantic labels, such metric geometric quantities
are non-trivial for humans to label. As an example, consider
images in Figure 4, and consider speculating the robot heading
and placement in the row. To circumvent this issue, we
designed an indirect annotation procedure. We asked humans
to label the horizon and the vanishing lines corresponding
to the crop row (Figure 6 (left)). This together with the
camera calibration information allows us to recover the robot
heading and placement in row using projective geometry.
Figure 5 provides an overview of the different steps involved in
computing these quantities from the annotated images. For the
case where the horizon is not visible, we instead ask humans to
mark out vertical crop stalks (Figure 6 (right)). This allows us
to estimate the vanishing point for the vertical direction which
readily provides the slope of the horizon. Precise formulae and
derivations are provided in the supplementary material.

We annotated a total of25; 296 corn images. 28% of these
are from early growth stage, while 72% are from late growth
stage. We split the dataset into a training and a validation set
(83% training, 17% validation). We made sure that data from
the same video is either entirely in the training set, or entirely
in the validation set. Our main experiments use this corn data.
We also labeled10; 685soybean images (54% early, 46% mid)
to study transfer across crops.

V. EXPERIMENTAL RESULTS

Our experiments are designed to test the autonomous crop
row traversal capability of our proposed system, effectiveness
of the proposed modular policy, and data ef�ciency and gen-
eralization of our learned models. We evaluate these aspects
through a combination of of�ine and online (�eld) experi-
ments. Of�ine experiments are conducted on our collected
dataset. They allow us to systematically study data ef�ciency
and model generalization, and help us chose models for online
experiments. Online experiments are conducted in the �eld,
and allow us to study the interplay between perception and
control systems. We also conduct end-to-end evaluation for
the task of crop row traversal, and compare against an existing
system based on LiDAR [63].

A. Of�ine Evaluation of Perception Model

Of�ine evaluation of the perception module is conducted
on the collected dataset. All experiments except ones for

Model Mean Median 95%ile

� err derr � err derr � err derr

Baseline 11:41 0.48 8.81 0.48 30:33 0.65
Combined 2:24 0.08 1.39 0.06 5:37 0.20
Separate 1.99 0.04 1.21 0.03 4.71 0.10

TABLE I: Perception Module Performance: We report L1 error in
heading (in� ) and distance ratio prediction. The trivial baseline model
always predicts median� , d from the training set. The combined
model learns heading and distance simultaneously, but ultimately
performs worse than individually trained models.

generalization across crops, use the corn to train and test.
Metrics. We measure prediction performance using L1 error
in heading and distance ratio predictions,� andd.
Training. We used ResNet-18 [31] pretrained on Ima-
geNet [20] to initialize our models. Models were trained to
minimize theL2 loss with the Adam optimizer [38] for 50
epochs. We started with an initial learning rate of10� 4 and
dropped it by a factor of 10 at 40th and 45th epochs. All layers
of the network were optimized.
Results.Table I presents the performance of our CNN models.
We experimented with 2 variants: predicting heading and
distance ratio separately using two models, and a single multi-
task network. For reference, we also report the performance for
a trivial predictor that always predicts the median heading and
distance ratio from the training set. This measures the hardness
of the task, puts performance of our model in context.

Both models worked well, with the separate model variant
working better. Our best model achieves an average L1 error of
1:99� for heading, and0:04 for distance ratio. Inference speed
for this model on the robot was around20 FPS, which is fast
enough for accurate control (more on this in Section V-D).
Our main �eld experiments are conducted with this model.

B. Comparison with Classical Baselines

Color-based segmentation is a common �rst step in classical
vanishing lines based row following literature. Figure 7 shows
the results of automatic color-based segmentation on common
late stage data. We see that the segmented lane is not clear.
This validates CropFollow's learning-based approach as a gen-
eral navigation system for all growth stages across the season.
To compare with a feature matching based VIO algorithm,
Vins-fusion was used as the baseline [50]. To compare with
stereo based Vins-fusion as well, data collected from Intel
Realsense D435i camera was used only for this experiment
and recommended intrinsic values from Realsense library was
used as Vins-fusion parameters. Figure 8 demonstrates the
heading and cross track error of CropFollow, Vins-fusion with
monocular RGB camera and with stereo IR camera. Note that
in case of distance the plot shows cross track error (offset
distance from the middle of the lane) and not the relative
error with respect to the ground truth. The ground truth was
calculated by annotating vanishing lines and horizon (same
approach as training labels for CropFollow). Ground truth
heading and distance ratio at �rst frame was used to initialize
Vins-fusion localization (both monocular RGB and stereo
IR). CropFollow is vastly superior to Vins-fusion in distance



Fig. 5: Ground truthing procedure. Using the horizon annotations, we correct for the camera roll, and pitch. After this, heading,� can
be calculated by looking at the crop row vanishing point, and distance ratio can be computed from the intercepts of the crop row lines in
the heading corrected image, asdL =(dL + dR ).

Fig. 6: Annotations. We annotate the horizon and crop rows for
early season images (left). For late season images when the horizon
is not visible, we annotate the vertical corn stalks (right).

Fig. 7: Classical color-based vanishing line segmentation on late stage
data according to related works [7, 67]. We see that crop segmentation
does not produce a clear visual of the lane, so automatic vanishing
line based lane-following is not possible. In particular, extraneous
leaves arti�cially alter the boundaries of the lane.

prediction as seen from very similar cross track error as ground
truth and is comparable in heading. Although Vins-fusion
shows comparable heading tracking, it suffers signi�cantly
from position drift which is orders of magnitude greater than
the lane width between crop rows (about 0.75m) making it
impractical to use for row following. This is because there
is no opportunity for loop closure in long crop rows. This
validates reactive navigation as pursued in CropFollow is a
valid approach for row following.

C. In Field End-to-End System Evaluation

We conducted end-to-end system evaluation with the model
described above. We compared the performance of the follow-
ing 2 systems, along with 2 variants each:

� CropFollow (w/ IMU) . This is our proposed system that
uses the above CNN model for heading and distance ratio
prediction, EKF for fusing IMU information, and MPC
for executing control commands. We also compare with
a variant that does not use IMU information (denoted by
CropFollow (w/o IMU)).

� LiDAR System [63] (w/ IMU) . This system uses readings
from the LiDAR mounted on top of the robot to estimate the
robot heading and distance from the crop rows using line
�tting. Other parts of the system are same as our system:
Use of an EKF to fuse information from the IMU, and use
of MPC for generating control commands. We also compare

Fig. 8: CropFollow vs. Vins-fusion mono vs. Vins-fusion stereo.
We compare the cross track error (CTE) (offset distance of the robot
from the middle of the lane) and heading of CropFollow, Vins-fusion
with mono and Vision-fusion with stereo IR at different frames in a
trajectory. CropFollow shows better CTE than Vins-fusion.

Fig. 9: Sample images from �eld trials. Bottom row consists of
traditionally adverse conditions for vision-based navigation.

to a variant that does not use IMU information (denoted by
LiDAR System [63] (w/o IMU)).

Evaluation Methodology. All 4 systems are tested on the
same unique4:85 km. These4:85 km come from 15 different
experiments that were done in different parts of the �eld,
over different growth stages, different days, different time
of the day, and weather conditions. While there is a lot of
variability in these4:85 km, we attempted to minimized the
variability in conditions for the 4 systems to ensure result
comparability. Runs for the different systems for each of the
15 experiments were done one after another over the same
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