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Lecture overview
• Different problems in computer vision
• Supervised classification
• Beyond supervised classification: A taxonomy of prediction 

problems and types of supervision
• Image classification
• k-Nearest Neighbors



Different Recognition Problems

This image by Nikita is 
licensed under CC-BY 2.0

Classification: Assign 
image to one of a 

fixed set of categories

Object Detection: Put a 
bounding box around each 

instance of a class

Instance Segmentation: Mark 
pixels for each instance of a class

Semantic 
Segmentation: Label 
each pixels with its 

category

https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/


Different Recognition Problems

Image Captioning: Man 
riding a horse on a beach

Keypoint prediction

Depth Prediction: how far is 
each pixel in the image

Viewpoints and Keypoints

Shubham Tulsiani and Jitendra Malik
University of California, Berkeley - Berkeley, CA 94720

{shubhtuls,malik}@eecs.berkeley.edu

Abstract

We characterize the problem of pose estimation for rigid
objects in terms of determining viewpoint to explain coarse
pose and keypoint prediction to capture the finer details. We
address both these tasks in two different settings - the con-
strained setting with known bounding boxes and the more
challenging detection setting where the aim is to simulta-
neously detect and correctly estimate pose of objects. We
present Convolutional Neural Network based architectures
for these and demonstrate that leveraging viewpoint esti-
mates can substantially improve local appearance based
keypoint predictions. In addition to achieving significant
improvements over state-of-the-art in the above tasks, we
analyze the error modes and effect of object characteristics
on performance to guide future efforts towards this goal.

1. Introduction

There are two ways in which one can describe the pose
of the car in Figure 1 - either via its viewpoint or via spec-
ifying the locations of a fixed set of keypoints. The former
characterization provides a global perspective about the ob-
ject whereas the latter provides a more local one. In this
work, we aim to reliably predict both these representations
of pose for objects.

Our overall approach is motivated by the theory of global
precedence - that humans perceive the global structure be-
fore the fine level local details [27]. It was also noted
by Koenderink and van Doorn [22] that viewpoint deter-
mines appearance and several works have shown that larger
wholes improve the discrimination performance of parts
[31, 26, 29]. Inspired by this philosophy, we propose an
algorithm which first estimates viewpoint for the target ob-
ject and leverages the predicted viewpoint to improve the
local appearance based keypoint predictions.

Viewpoint is manifested in a 2D image by the spatial re-
lationships among the different features of the object. Con-
volutional Neural Network (CNN) [9, 24] based methods
which can implicitly capture and hierarchically build on
such relations are therefore suitable candidates for view-

Figure 1: Alternate characterizations of pose in terms of
viewpoint and keypoint locations

point prediction.
A robot which merely knows that a cup exists but cannot

find its handle will not be able to grasp it. Towards the goal
of developing a finer understanding of objects, we tackle
the task of predicting keypoints by modeling appearances
at multiple scales - a fine scale appearance model, while
prone to false positives can localize accurately and a coarser
scale appearance model is more robust to mis-localizations.
Note that merely reasoning over local appearance is not suf-
ficient to solve the task of keypoint prediction. For example,
the notion of the ’front wheel’ assumes its meaning in con-
text of the whole bicycle. The local appearance of the patch
might also correspond to the ’back wheel’ - it is because we
know the bicycle is front facing that we are able to disam-
biguate. Motivated by this, we use the viewpoint predicted
by our system to improve the local appearance based key-
point predictions.

Our proposed algorithm, as illustrated in Figure 2 has the
following components -

Viewpoint Prediction : We formulate the problem of
viewpoint prediction as predicting three euler angles ( az-
imuth, elevation and cyclorotation) corresponding to the in-
stance. We train a CNN based architecture which can im-
plicitly capture and aggregate local evidences for predicting
the euler angles to obtain a viewpoint estimate.

Local Appearance based Keypoint Activation : We
propose a fully convolutional CNN based architecture to
model local part appearance. We capture the appearance
at multiple scales and combine the CNN responses across
scales to obtain a resulting heatmap which corresponds to a
spatial log-likelihood distribution for each keypoint.

Pose Prediction: Rotation 
that aligns object to a 

canonical pose
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Inference

The basic ML framework (for supervised learning)

Training
Training 
time

Test time

Unlabeled test 
sample

Learned 
model

Learned 
model

Labeled training data
“apple”
“pear”

“tomato”
“cow”
“dog”

“horse”

Label prediction

“apple”



The basic ML framework (for supervised learning)

𝑦 = 𝑓(𝑥)

• Training (or learning): given a training set of labeled 
examples {(𝑥1, 𝑦1), … , (𝑥𝑁, 𝑦!)}, instantiate a predictor 𝑓
• Testing (or inference): apply 𝑓 to a new test example 𝑥

and output the predicted value 𝑦 = 𝑓(𝑥)

• Rather than hand-defining how 2D projections of apples are different from 
pears, 𝑓 will learn this from the data.

output prediction 
function

input



Is an image classifier all you need?
• Image Classification
• Object Detection
• Instance Segmentation
• Semantic Segmentation
• Image Captioning
• Depth Prediction
• Keypoint Prediction
• Pose Prediction
• …

Detection



Taxonomy of learning problems
• Type of output
• Classification
• Regression
• 𝑦 = 𝑓 𝑥 . 𝑦 is an arbitrary 

scalar and not a class label.
• Structured prediction
• 𝑦 = 𝑓 𝑥 . 𝑦 is a structured 

object.

Sentence Parse tree

Depth Prediction: how far is 
each pixel in the image

Several computer vision problems have 
structure in the output space, but often 
solving a classification problem with 
some simple post-processing (or even 
without) ends up being sufficient.



Taxonomy of learning problems
• Type of output
• Classification
• Regression
• 𝑦 = 𝑓 𝑥 . 𝑦 is an arbitrary scalar and not a class label.

• Structured prediction
• 𝑦 = 𝑓 𝑥 . 𝑦 is a structured object.

• Type of supervision
• Supervised learning
• Unsupervised learning
• Self-supervised or predictive learning



Type of supervision

Unsupervised: no 
labels

Supervised: 
clean, complete 

training labels for 
the task of 

interest

Semi-supervised: 
labels for a small portion of 

training data

Weakly supervised: noisy 
labels, labels not exactly for 

the task of interest

Self-supervised:
same as unsupervised?



Unsupervised learning



Unsupervised learning
• Clustering
• Discover groups of “similar” data points

Y. Gong, Q. Ke, M. Isard, and S. Lazebnik. A Multi-View Embedding 
Space for Modeling Internet Images, Tags, and Their Semantics. IJCV 
2014

http://slazebni.cs.illinois.edu/publications/yunchao_cca13.pdf
http://slazebni.cs.illinois.edu/publications/yunchao_cca13.pdf


• Dimensionality reduction, manifold learning
• Discover a lower-dimensional surface on which the data lives

Unsupervised learning

D. Kingma and M. Welling, Auto-Encoding Variational Bayes, ICLR 2014

https://arxiv.org/pdf/1312.6114.pdf


Unsupervised learning
• Learning the data distribution
• Density estimation: Find a function that approximates the probability density 

of the data (i.e., value of the function is high for “typical” points and low for 
“atypical” points)
• An extremely hard problem for high-dimensional data…



Unsupervised learning
• Learning the data distribution
• Learning to sample: Produce samples from a data distribution that mimics 

the training set
E.g. Generative adversarial networks (GANs) 

“Bedroom” 
(circa 2015)

“Face” (circa 
2015)

https://arxiv.org/abs/1511.06434
https://arxiv.org/abs/1511.06434


Self-supervised or predictive learning
• Use part of the data to predict other parts of the data
• Example: Masked patch prediction

K. He et al. Masked autoencoders are scalable vision learners. CVPR 2022

https://arxiv.org/pdf/2111.06377.pdf
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• 𝑦 = 𝑓 𝑥 . 𝑦 is an arbitrary scalar and not a class label.

• Structured prediction
• 𝑦 = 𝑓 𝑥 . 𝑦 is a structured object.
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Image Classification



Slide from Justin Johnson

Challenges: Viewpoint Variation

All pixels change when 
the camera moves!

This image by Nikita is 
licensed under CC-BY 2.0

https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/


Slide from Justin Johnson

Challenges: Intraclass Variation

This image is CC0 1.0 public domain

http://maxpixel.freegreatpicture.com/Cat-Kittens-Free-Float-Kitten-Rush-Cat-Puppy-555822
https://creativecommons.org/publicdomain/zero/1.0/deed.en


Slide from Justin Johnson

Challenges: Fine-Grained Categories

This image is free for for use under the Pixabay License

Maine Coon Ragdoll

This image is CC0 public domain

American Shorthair

This image is CC0 public domain

https://pixabay.com/photos/maine-coon-cat-animal-portrait-3347769/
https://pixabay.com/service/license/
https://www.publicdomainpictures.net/en/view-image.php?image=99009&picture=ragdoll-cat-with-green-eyes
http://creativecommons.org/publicdomain/zero/1.0/
https://pxhere.com/en/photo/1374002
https://creativecommons.org/publicdomain/zero/1.0/
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Challenges: Background Clutter

This image is CC0 1.0 public domain This image is CC0 1.0 public domain

https://pixabay.com/en/cat-camouflage-autumn-fur-animals-408728/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://www.pexels.com/photo/view-of-cat-in-snow-248276/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Challenges: Illumination Changes

This image is CC0 1.0 public domain This image is CC0 1.0 public domain This image is CC0 1.0 public domain This image is CC0 1.0 public domain

https://pixabay.com/en/cat-cat-in-the-dark-eyes-staring-987528/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
http://maxpixel.freegreatpicture.com/Cats-Silhouette-Cats-Eyes-Silhouette-Cat-694730
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/red-cat-animals-cat-face-cat-red-1451799/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
http://maxpixel.freegreatpicture.com/Animals-Tree-Sun-Cat-In-Tree-Cat-Feline-Titus-63683
https://creativecommons.org/publicdomain/zero/1.0/deed.en


Slide from Justin Johnson

Challenges: Deformation

This image by Umberto Salvagnin is 
licensed under CC-BY 2.0

This image by Tom Thai is licensed 
under CC-BY 2.0 

This image by sare bear is licensed 
under CC-BY 2.0

This image by Umberto Salvagnin is 
licensed under CC-BY 2.0

https://www.flickr.com/photos/kaibara/3625964429/in/photostream/
https://www.flickr.com/photos/kaibara/
https://creativecommons.org/licenses/by/2.0/
https://c1.staticflickr.com/5/4101/4877610923_52c9a5fedf_b.jpg
https://www.flickr.com/photos/eviltomthai/
https://creativecommons.org/licenses/by/2.0/
https://www.flickr.com/photos/sarahcord/364252525
https://www.flickr.com/photos/sarahcord/
https://creativecommons.org/licenses/by/2.0/
https://www.flickr.com/photos/34745138@N00/4068996309
https://www.flickr.com/photos/kaibara/
https://creativecommons.org/licenses/by/2.0/


Slide from Justin Johnson

Challenges: Occlusion

This image is CC0 1.0 public domain This image by jonsson is licensed 
under CC-BY 2.0This image is CC0 1.0 public domain

https://pixabay.com/p-393294/?no_redirect
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://commons.wikimedia.org/wiki/File:New_hiding_place_(4224719255).jpg
https://www.flickr.com/people/81571077@N00?rb=1
https://creativecommons.org/licenses/by/2.0/
https://pixabay.com/en/cat-hidden-meadow-green-summer-1009957/
https://creativecommons.org/publicdomain/zero/1.0/deed.en


Slide from Justin Johnson

Image Classification Datasets: MNIST

10 classes: Digits 0 to 9
28x28 grayscale images
50k training images
10k test images
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Image Classification Datasets: MNIST

10 classes: Digits 0 to 9
28x28 grayscale images
50k training images
10k test images

“Drosophila of computer vision”

Results from MNIST often do not 
hold on more complex datasets!



Slide from Justin Johnson

Image Classification Datasets: CIFAR10

Alex Krizhevsky, “Learning Multiple Layers of Features from Tiny Images”, Technical Report, 2009.

10 classes
50k training images (5k per class)
10k testing images (1k per class)
32x32 RGB images



Slide from Justin Johnson

Image Classification Datasets: CIFAR100

Alex Krizhevsky, “Learning Multiple Layers of Features from Tiny Images”, Technical Report, 2009.

100 classes
50k training images (500 per class)
10k testing images (100 per class)
32x32 RGB images

20 superclasses with 5 classes each:

Aquatic mammals: beaver, dolphin, 
otter, seal, whale
Trees: Maple, oak, palm, pine, willow



Slide from Justin Johnson

Image Classification Datasets: ImageNet

Deng et al, “ImageNet: A Large-Scale Hierarchical Image Database”, CVPR 2009
Russakovsky et al, “ImageNet Large Scale Visual Recognition Challenge”, IJCV 2015

1000 classes

~1.3M training images (~1.3K per class)
50K validation images (50 per class)
100K test images (100 per class)

Performance metric: Top 5 accuracy
Algorithm predicts 5 labels for each 
image; one of them needs to be right
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Image Classification Datasets: ImageNet
1000 classes

~1.3M training images (~1.3K per class)
50K validation images (50 per class)
100K test images (100 per class)

test labels are secret!

Images have variable size, but often 
resized to 256x256 for training

There is also a 22k category version of 
ImageNet, but less commonly usedDeng et al, “ImageNet: A Large-Scale Hierarchical Image Database”, CVPR 2009

Russakovsky et al, “ImageNet Large Scale Visual Recognition Challenge”, IJCV 2015
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Image Classification Datasets: MIT Places

Zhou et al, “Places: A 10 million Image Database for Scene Recognition”, TPAMI 2017

365 classes of different scene types

~8M training images
18.25K val images (50 per class)
328.5K test images (900 per class)

Images have variable size, often 
resize to 256x256 for training



Slide from Justin Johnson

k-Nearest Neighbors



Slide from Justin Johnson

First classifier: Nearest Neighbor

Memorize all data 
and labels

Predict the label of 
the most similar 
training image



Slide from Justin Johnson

Distance Metric to compare images

L1 distance:

add

𝑑" 𝐼", 𝐼# =-
$

|𝐼"
$ − 𝐼#

$|
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Nearest Neighbor Classifier
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Nearest Neighbor Classifier

Memorize training data



Slide from Justin Johnson

Nearest Neighbor Classifier

For each test image:
Find nearest training image
Return label of nearest image



Slide from Justin Johnson

Nearest Neighbor Classifier

Q: With N examples, 
how fast is training?
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Nearest Neighbor Classifier

Q: With N examples, 
how fast is training?
A: O(1)
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Nearest Neighbor Classifier

Q: With N examples, 
how fast is training?
A: O(1)

Q: With N examples, 
how fast is testing?
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Nearest Neighbor Classifier

Q: With N examples, 
how fast is training?
A: O(1)

Q: With N examples, 
how fast is testing?
A: O(N)

This is bad: We can 
afford slow training, but 
we need fast testing!



1-Nearest Neighbor Complexity

Fast k-Nearest Neighbour Search via Prioritized DCI. Ke Li, Jitendra Malik. ICML 2017

Bad news overall: 
Exponential in dimensionality or 
(almost) linear in number of data points.

Good Implementation:

https://github.com/facebookresearch/faiss

https://arxiv.org/pdf/1703.00440.pdf
https://github.com/facebookresearch/faiss


Slide from Justin Johnson

What does this look like?
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What does this look like?
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Nearest Neighbor Decision Boundaries

x0

x1
Nearest neighbors
in two dimensions 
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x1
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Points are training 
examples; colors 
give training labels
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Points are training 
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Background colors 
give the category 
a test point would 
be assigned 

x
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x0

x1
Nearest neighbors
in two dimensions 

Points are training 
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give training labels
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give the category 
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x

Decision boundary 
is the boundary 
between two 
classification regions
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Nearest Neighbor Decision Boundaries

x0

x1
Nearest neighbors
in two dimensions 

Points are training 
examples; colors 
give training labels

Background colors 
give the category 
a test point would 
be assigned 

x

Decision boundary 
is the boundary 
between two 
classification regions

Decision boundaries 
can be noisy; 
affected by outliers
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Nearest Neighbor Decision Boundaries

x0

x1
Nearest neighbors
in two dimensions 

Points are training 
examples; colors 
give training labels

Background colors 
give the category 
a test point would 
be assigned 

x

Decision boundary 
is the boundary 
between two 
classification regions

Decision boundaries 
can be noisy; 
affected by outliers

How to smooth out 
decision boundaries?
Use more neighbors!



Slide from Justin Johnson

K-Nearest Neighbors

K = 1 K = 3

Instead of copying label from nearest neighbor, 
take majority vote from K closest points
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K-Nearest Neighbors

K = 1 K = 3

Using more neighbors helps smooth 
out rough decision boundaries
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K-Nearest Neighbors

K = 1 K = 3

Using more neighbors helps 
reduce the effect of outliers
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K-Nearest Neighbors

K = 1 K = 3

When K > 1 there can be 
ties between classes. 
Need to break somehow!
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K-Nearest Neighbors: Distance Metric

L1 (Manhattan) distance L2 (Euclidean) distance

𝑑! 𝐼!, 𝐼" =%
#
𝐼!
# − 𝐼"

# 𝑑! 𝐼!, 𝐼" = %
#
𝐼!
# − 𝐼"

# "
!
"
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K-Nearest Neighbors: Distance Metric
Can get quite creative with the distance function, e.g. bending energy 
(how much do you need to transform one example to look like another)

Shape Matching and Object Recognition Using Shape Context Serge Belongie, Jitendra Malik, and Jan Puzicha, PAMI 2002

https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/shape/belongie-pami02.pdf


Slide from Justin Johnson

K-Nearest Neighbors: 
Web Demo

http://vision.stanford.edu/teaching/cs231n-demos/knn/

Interactively move points around 
and see decision boundaries change

Play with L1 vs L2 metrics

Play with changing number of 
training points, value of K

http://vision.stanford.edu/teaching/cs231n-demos/knn/


Slide from Justin Johnson

Hyperparameters

What is the best value of K to use?
What is the best distance metric to use?

These are examples of hyperparameters: choices about our 
learning algorithm that we don’t learn from the training 
data; instead we set them at the start of the learning process
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Hyperparameters

What is the best value of K to use?
What is the best distance metric to use?

These are examples of hyperparameters: choices about our 
learning algorithm that we don’t learn from the training 
data; instead we set them at the start of the learning process

Very problem-dependent. In general need to try them all and 
see what works best for our data / task.
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Setting Hyperparameters
Idea #1: Choose hyperparameters 
that work best on the training data

BAD: K = 1 always works perfectly on training data (in 
general, memorization is sufficient for acing the train set)

train test
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Setting Hyperparameters
Idea #1: Choose hyperparameters 
that work best on the training data

BAD: K = 1 always works perfectly on training data (in 
general, memorization is sufficient for acing the train set)

Idea #2: Choose hyperparameters 
that work best on test data

BAD: No idea how algorithm will perform on new 
data.

train test

Idea #3: Split dataset into train and val; choose 
hyperparameters on val and evaluate on test.

Better!

train testvalidation

train test
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Setting Hyperparameters

Example of 5-fold cross-validation for 
the value of k.

Each point: single outcome. 

The line goes through the mean, bars
indicated standard deviation

(Seems that k ~ 7 works best
for this data)



Slide from Justin Johnson

K-Nearest Neighbor: Universal Approximation
As the number of training samples goes to infinity, nearest 
neighbor can represent any(*) function!

(*) Subject to many technical conditions. Only continuous functions on a compact domain; need to make assumptions about spacing of training points; etc.
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K-Nearest Neighbor: Universal Approximation
As the number of training samples goes to infinity, nearest 
neighbor can represent any(*) function!
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K-Nearest Neighbor on raw pixels is seldom used

- Very slow at test time
- Distance metrics on pixels are not informative

(all 3 images have same L2 distance to the one on the left)

Original Boxed Shifted Tinted

Original image is 
CC0 public domain

https://www.pexels.com/photo/blonde-haired-woman-in-blue-shirt-y-27411/
https://creativecommons.org/publicdomain/zero/1.0/
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Nearest Neighbor with ConvNet features works well!

Devlin et al, “Exploring Nearest Neighbor Approaches for Image Captioning”, 2015
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Devlin et al, “Exploring Nearest Neighbor Approaches for Image Captioning”, 2015

Image Captioning with Nearest Neighbor

Can transfer more than just label!

https://arxiv.org/pdf/1505.04467.pdf
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Image Captioning with Nearest Neighbor

Can transfer more than just label!

Outperformed many other End-to-
end models at the time.

https://arxiv.org/pdf/1505.04467.pdf


Can transfer more than just label!

Malisiewicz et al, “Ensemble of Exemplar-SVMs for Object Detection and Beyond”, ICCV 2011

http://www.cs.cmu.edu/~tmalisie/projects/iccv11/
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Lecture overview
• Different problems in computer vision
• Supervised classification
• Beyond supervised classification: A taxonomy of prediction 

problems and types of supervision
• Image classification
• k-Nearest Neighbors


