Lecture 2:
Recognition Problems in Vision
and k-Nearest Neighbors

CS 444: Deep Learning for Computer Vision
Saurabh Gupta

Many slides from Justin Johnson



Lecture overview

e Different problems in computer vision
e Supervised classification

* Beyond supervised classification: A taxonomy of prediction
problems and types of supervision

* Image classification
* k-Nearest Neighbors



Different Recognition Problems

Object Detection: Put a Instance Segmentation: Mark
bounding box around each pixels for each instance of a class
instance of a class

Semantic
Segmentation: Label
each pixels with its
category

Classification: Assign
image to one of a
fixed set of categories



https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/

Different Recognition Problems
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Pose Prediction: Rotation
that aligns object to a

Keypoint prediction canonical pose

Depth Predlctlon how far is
each pixel in the image



The basic ML framework (for supervised learning)
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The basic ML framework (for supervised learning)

y = f(x)

T RN

output prediction input
o ] . ~ function
* Training (or learning): given a training set of labeled
examples {(x4, V1), ..., (xy, Yn)}, instantiate a predictor f 2| v ey 19, 37| ey et

* Testing (or inference): apply / to a new test example x

and output the predicted value y = f(x)

* Rather than hand-defining how 2D projections of apples are different from
pears, f will learn this from the data.




s an image classifier all you need?

* Image Classification

* Object Detection

* Instance Segmentation
* Semantic Segmentation
* Image Captioning

* Depth Prediction
* Keypoint Prediction

* Pose Prediction




Taxonomy of learning problems

* Type of output
 (lassification

* Regression

« y = f(x).yisan arbitrary
scalar and not a class label.

e Structured prediction

« vy = f(x).yisastructured
object.
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Sentence Parse tree

each pixel in the image

Several computer vision problems have
structure in the output space, but often
solving a classification problem with
some simple post-processing (or even
without) ends up being sufficient.



Taxonomy of learning problems

* Type of output
 (lassification

* Regression
« vy = f(x).yisan arbitrary scalar and not a class label.

e Structured prediction
vy = f(x).yisastructured object.

* Type of supervision
 Supervised learning

 Unsupervised learning
* Self-supervised or predictive learning



Type of supervision

Unsupervised: no
labels

Self-supervised:
same as unsupervised?

Semi-supervised:
labels for a small portion of
training data

Weakly supervised: noisy
labels, labels not exactly for
the task of interest

Supervised:
clean, complete
training labels for
the task of
interest



Unsupervised learning



Unsupervised learning

* Clustering

* Discover groups o
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Y. Gong, Q. Ke, M. Isard, and S. Lazebnik. A Multi-View Embedding
Space for Modeling Internet Images, Tags, and Their Semantics. 1JCV
2014



http://slazebni.cs.illinois.edu/publications/yunchao_cca13.pdf
http://slazebni.cs.illinois.edu/publications/yunchao_cca13.pdf

Unsupervised learning

Dimensionality reduction, manifold learning

* Discover a lower-dimensional surf
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D. Kingma and M. Welling, Auto-Encoding Variational Bayes, ICLR 2014


https://arxiv.org/pdf/1312.6114.pdf

Unsupervised learning

 Learning the data distribution

* Density estimation: Find a function that approximates the probability density
of the data (i.e., value of the function is high for “typical” points and low for
“atypical” points)

* An extremely hard problem for high-dimensional data...




Unsupervised learning

* Learning the data distribution

* Learning to sample: Produce samples from a data distribution that mimics
the training set

E.g. Generative adversarial networks (GANs)

lan Goodfellow ’
7 @goodfellow_ian

4.5 years of GAN progress on face generation.
arxiv.org/abs/1406.2661 arxiv.org/abs/1511.06434
arxiv.org/abs/1606.07536 arxiv.org/abs/1710.10196
arxiv.org/abs/1812.04948
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https://arxiv.org/abs/1511.06434
https://arxiv.org/abs/1511.06434

Self-supervised or predictive learning

Use part of the data to predict other parts of the data
* Example: Masked patch prediction
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K. He et al. Masked autoencoders are scalable vision learners. CVPR 2022



https://arxiv.org/pdf/2111.06377.pdf

Taxonomy of learning problems

* Type of output
 (lassification

* Regression
« vy = f(x).yisan arbitrary scalar and not a class label.

e Structured prediction
vy = f(x).yisastructured object.

* Type of supervision
 Supervised learning

 Unsupervised learning
* Self-supervised or predictive learning



Taxonomy of learning problems

* Type of output
 Classification

* Regression
« vy = f(x).yisan arbitrary scalar and not a class label.

e Structured prediction
vy = f(x).yisastructured object.

* Type of supervision
* Supervised learning

 Unsupervised learning
* Self-supervised or predictive learning



Image Classification




Challenges: Viewpoint Variation

Slide from Justin Johnson
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All pixels change when
the camera moves!


https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/

Challenges: Intraclass Variation
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Slide from Justin Johnson


http://maxpixel.freegreatpicture.com/Cat-Kittens-Free-Float-Kitten-Rush-Cat-Puppy-555822
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Challenges: Fine-Grained Categories

Maine Coon Ragdoll American Shorthair

Slide from Justin Johnson


https://pixabay.com/photos/maine-coon-cat-animal-portrait-3347769/
https://pixabay.com/service/license/
https://www.publicdomainpictures.net/en/view-image.php?image=99009&picture=ragdoll-cat-with-green-eyes
http://creativecommons.org/publicdomain/zero/1.0/
https://pxhere.com/en/photo/1374002
https://creativecommons.org/publicdomain/zero/1.0/

Challenges: Background Clutter

Slide from Justin Johnson


https://pixabay.com/en/cat-camouflage-autumn-fur-animals-408728/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://www.pexels.com/photo/view-of-cat-in-snow-248276/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Challenges: Illumination Changes

Slide from Justin Johnson


https://pixabay.com/en/cat-cat-in-the-dark-eyes-staring-987528/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
http://maxpixel.freegreatpicture.com/Cats-Silhouette-Cats-Eyes-Silhouette-Cat-694730
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/red-cat-animals-cat-face-cat-red-1451799/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
http://maxpixel.freegreatpicture.com/Animals-Tree-Sun-Cat-In-Tree-Cat-Feline-Titus-63683
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Challenges: Deformation

Slide from Justin Johnson


https://www.flickr.com/photos/kaibara/3625964429/in/photostream/
https://www.flickr.com/photos/kaibara/
https://creativecommons.org/licenses/by/2.0/
https://c1.staticflickr.com/5/4101/4877610923_52c9a5fedf_b.jpg
https://www.flickr.com/photos/eviltomthai/
https://creativecommons.org/licenses/by/2.0/
https://www.flickr.com/photos/sarahcord/364252525
https://www.flickr.com/photos/sarahcord/
https://creativecommons.org/licenses/by/2.0/
https://www.flickr.com/photos/34745138@N00/4068996309
https://www.flickr.com/photos/kaibara/
https://creativecommons.org/licenses/by/2.0/

Challenges: Occlusion

Slide from Justin Johnson


https://pixabay.com/p-393294/?no_redirect
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://commons.wikimedia.org/wiki/File:New_hiding_place_(4224719255).jpg
https://www.flickr.com/people/81571077@N00?rb=1
https://creativecommons.org/licenses/by/2.0/
https://pixabay.com/en/cat-hidden-meadow-green-summer-1009957/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Image Classification Datasets: MINIST
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Slide from Justin Johnson
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Slide from Justin Johnson

age Classification Datasets: MINIST

10 classes: Digits0to 9
28x28 grayscale images
50k training images
10k test images

“Drosophila of computer vision”

Results from MNIST often do not
hold on more complex datasets!



Image Classification Datasets: CIFAR10
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Slide from Justin Johnson

10 classes

50k training images (5k per class)
10k testing images (1k per class)
32x32 RGB images



Image Classification Datasets: CIFAR100

by 100 classes

-E a el m-"yl 50k training images (500 per class)
g\--.' -.ﬂ 10k testing images (100 per class)
o EpEmEnasn i & LI  32x32 RGB images
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’ig@wﬁ Trees: Maple, oak, palm, pine, willow

Slide from Justin Johnson

20 superclasses with 5 classes each:

Aquatic mammals: beaver, dolphin,




Image Classification Datasets: ImageNet
1000 classes

~1.3M training images (~1.3K per class)
- 50K validation images (50 per class)
100K test images (100 per class)

e : D Performance metric: Top 5 accuracy
== Algorithm predicts 5 labels for each
= image; one of them needs to be right
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dalmatian keeshond

Deng et al, “ImageNet: A Large-Scale Hierarchical Image Database”, CVPR 2009
Russakovsky et al, “ImageNet Large Scale Visual Recognition Challenge”, JCV 2015

Slide from Justin Johnson



Image Classification Datasets: ImageNet
1000 classes

~1.3M training images (~1.3K per class)
50K validation images (50 per class)
100K test images (100 per class)
test labels are secret!

' Images have variable size, but often
resized to 256x256 for training

N \ LS E
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keeshond " miniature schnauzer standard schnauzer giant schnauzer

There is also a 22k category version of
eng et al, “ImageNet: A Large-Scale Hierarchical Image Database”,
Eusikalkylet i,[jllrrfa:el;\lefLasrge S<|:_iale Visual Rclaco:nitli)o; ChaIIenSgZ'lzITJi?/O;;OlS ImagENet, bUt |eSS COm m0n|y USEd

Slide from Justin Johnson



Image Classification Datasets: MIT Places

veterinarians office elevator door

365 classes of different scene types

=
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~8M training images
18.25K val images (50 per class)
328.5K test images (900 per class)

~shoe shog

P oot o IMages have variable size, often
m i St 280 N LA resize to 256x256 for training
Indoor Nature

— c9nference center

Zhou et al, “Places: A 10 million Image Database for Scene Recognition”, TPAMI 2017

Slide from Justin Johnson



k-Nearest Neighbors

Slide from Justin Johnson



First classifier: Nearest Neighbor

def train(images, labels): Memorize all data

return model and labels

def predict(model, test_images): Predict the label of
P TOGe s tO Phetitt tabets > the most similar
training image

return test_labéls

Slide from Justin Johnson



Distance Metric to compare images

L1 distance: di(I1, 1) = 2 |If - I§|
p
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import numpy as np

class NearestNeighbor:
def _init (sel?):
pass

def train(self, X, y):
"u" X is N x D where each row is

::. Ine !W,O-J(';ZC’: neiohbor c 7\\.’.‘3“

self.Xtr = X
self.ytr =y

def predict(sel7, X):

"X is N x D where each row is
num test = X.shape[0]

# lets make sure that the output
Ypred = np.zeros(num_ test, dtype
# op over all test rows

for i in xrange(num test):

an example Y is 1-dimension of size N """

simp remembers all the training data

- L MLy C C T

an example we wish to predict label for

- T matrhoac + h o~ s+

T™VvVDH
vype atcnes e 1nput type

]
)
‘<
+
|
Q
~+
<
=)
]

# find the nearest training image to the i'th test image

# usjmg the L1 distance :_~ of absolute value diffe e;:e>'

distances = np.sum(np.abs(sel7.Xtr - X[1,:]), axis = 1)

min_index = np. argmln(dlstances) get the index with smallest distance
Ypred[i] = self.ytr[min_index] # predict the label of the nearest example

return Ypred

Slide from Justin Johnson

Nearest Neighbor Classifier



import numpy as np . .o
Nearest Neighbor Classifier
class NearestNeighbor:
def _init (sel?):
pass

def train(self, X, y):
"u® X is N x D where each row is an example Y is 1- dlmen51on of size N """ . L.
# the nearest neighbor classifier simply remembers all the training data Memonze tra|n|ng data
self.Xtr = X
self.ytr =y

def predict(sel7, X):
"u® X is N x D where each row is an example we wish to predict label for """
num test = X. shape[O]

R ure that the output tvope matches the input tvpe
# lets make sure ¢ i Lype atcrnes une put Ltype

Ypred = np. zeros(num test dtype = S

(44

LT.ytr.dtype)

# loop over all test rows

for i in xrange(num test)
# using the L1 distance (sum of absolute value differences
distances = np.sum(np. abs(»;i’ Xtr - X[1i,: ]), axis = 1)

min_index = np. argmln(dlstances) jet the index with smallest distanc
Ypred[i] = self.ytr[min_index] # predict the label of the nearest

return Ypred

Slide from Justin Johnson



import numpy as np

class NearestNeighbor:
def _init (sel?):
pass

def train(self,

X, y):

""" X is N x D where each row is an example. Y is 1- dlmen51on of size N """

# the nearest neighbor classifier simply remembers all the trainin data
E‘CL. Xtr = X
self.ytr =y
def predict(sel7, X):
"un X is N x D where each row is an example we wish to predict label for """
num test = X. shape[@]
- Iét‘s make sure at the +nint ‘, no matrrhoc +he innnt + e
Ypred = np.zeros(num_test, dtype = self.ytr.dtype)
for i in xrange(num test)
dlstances = np. sum(np abs( ;i' Xtr - X[1, ]), axis = 1)
min_index = np. argmln(dlstances) jet the index with smallest distance
Ypred[i] = self.ytr[min_index] # predict the label of the nearest example

return Ypred

Slide from Justin Johnson

Nearest Neighbor Classifier

For each test image:
Find nearest training image
Return label of nearest image



import numpy as np

Nearest Neighbor Classifier

class NearestNeighbor:

def init (sel7):
pass .
Q: With N examples,
def train(self, X, y): . . . 3
""" X is N x D where each row is an example. Y is 1l-dimension of size N """ hOW faSt IS tra|n|ng.
self.ytr =y

def predict(self, X):
"u® X is N x D where each row is an example we wish to predict label for
num test = X.shape[0]

Ypred = np.zeros(num_test, dtype = self.ytr.dtype)

for i in xrange(num test):

distantes np.sum(np.abs(sel7.Xtr - X[i,:]), axis = 1)
min_index = np.argmin(distances) # get the index with smallest distance
Ypred[i] = self.ytr[min_index] # predict the label of > nearest

return Ypred

Slide from Justin Johnson



import numpy as np . . fe
Nearest Neighbor Classifier
class NearestNeighbor:
def init (sel7):
pass

Q: With N examples,

def train(self, X, y):

""" X is N x D where each row is an example. Y is 1-dimension of size N """ hOW faSt iS training?
elf.Xtr =X | A: O(1)
self.ytr =y

def predict(self, X):
"u® X is N x D where each row is an example we wish to predict label for
num test = X.shape[0]

Ypred = np.zeros(num_test, dtype = self.ytr.dtype)
for i in xrange(num test):

distantes = np.sum(np.abs(sel7.Xtr - X[1i,:]), axis 1)
min index = np.argmin(distances) # gef the inde ith smallest distance
Ypred[i] = self.ytr[min_index] # edict t | L of t carest

return Ypred

Slide from Justin Johnson



import numpy as np

Nearest Neighbor Classifier

class NearestNeighbor:
def init ( =

pass .
Q: With N examples,
def train( . Ko NY)= . . .
""" X is N x D where each row is an example. Y is 1l-dimension of size N """ hOW faSt IS tra|n|ng?
Xtr = X A: O(1)
Ytr =y

def predict( Ao & B
" X is N x D where each row is an example we wish to predict label for """

num test = X.shape[©] Q: With N examp|es,
Ypred = np.zeros(num test, dtype = .ytr.dtype)r hOW faSt iS teSting?

for i in xrange(num test):

distances = np.sum(np.abs( Xtr - X[1,:]), axis = 1)

min index = np.argmin(distances) -
Ypred[i] = ytr[min_index]

return Ypred

Slide from Justin Johnson



import numpy as np . . fe
Nearest Neighbor Classifier
class NearestNeighbor:

def init ( =

pass .
Q: With N examples,
def train( . Ko NY)= . . .
" X is N x D where each row is an example. Y is 1l-dimension of size N """ hOW faSt IS tra|n|ng?
Xtr = X A: 0(1)
Ytr =y

def predict( Ao & B
" X is N x D where each row is an example we wish to predict label for """

num test = X.shape[©] Q: With N examp|es,
Ypred = np.zeros(num test, dtype = .ytr.dtype) hOW faSt iS teSting?

A: O(N)

for i in xrange(num test):

distances = np.sum(np.abs( Xtr - X[1,:]), axis = 1)

min index = np.argmin(distances) -
Ypred[i] = ytr[min_index]

return Ypred

Slide from Justin Johnson



import numpy as np

Nearest Neighbor Classifier

class NearestNeighbor:
def init ( =

pass .
Q: With N examples,
def train( . Xi ¥): . .« .
‘" X is N x D where each row is an example. Y is 1-dimension of size N """ hOW faSt IS tra|n|ng?
Xtr = X A: 0(1)
ytr =y
def predict( 5,6 b
‘" X is N x D where each row is an example we wish to predict label for """ .
num_test = X.shape[0] Q: With N examp|es,
Ypred = np.zeros(num test, dtype = .ytr.dtype) hOW faSt iS tESting?
p. A: O(N)
for i in xrange(num test):
distances = np.sum(np.abs( Xtr - X[i,:]), axis = 1 Th|S iS bad: We can
min _index = np.argmin(distances) .« .
Ypred[i] = .ytr[min_index] afford SIOW tra|n|ng, bUt
return Ypred we need fast testing!

Slide from Justin Johnson



1-Nearest Neighbor Complexity

Method Query Time Complexity
Exact Algorithms: ’
RP Tree O((d'log )" +logn) Bad news overall:
Spill Tree O(d'd’ + log n) . ] ] ] ]
Karger & Ruhl (2002)  O(2** logn) Exponential in dimensionality or
Navigating Net 20(d) Jog n . . .
Cover Tree 022 logn) (almost) linear in number of data points.
Rank Cover Tree 020 1oe M p2/hy for b > 3
DCI O(d max(logn, nl"l/dl))
Prioritized DCI O(d max(log n,n*~™/ d/)
(Proposed Method) +(m log m) max(logn,n* 1/ d,))
form >1
Approximate Algorithms:
k-d Tree O((1/€)*logn)
BBD Tiee O((6/€)" logn) Good Implementation:
LSH ~ O(dn/(1+9%) )

Table 1. Query time complexities of various algorithms for 1-NN i .
search. Ambient dimensionality, intrinsic dimensionality, dataset https :/ / g|th ub.co m/ facebookresea rCh/ faiss
size and approximation ratio are denoted as d, d’, n and 1 + .

A visualization of the growth of various time complexities as a

function of the intrinsic dimensionality is shown in Figure 1.

Fast k-Nearest Neighbour Search via Prioritized DCI. Ke Li, Jitendra Malik. ICML 2017



https://arxiv.org/pdf/1703.00440.pdf
https://github.com/facebookresearch/faiss

What does this look like?

Slide from Justin Johnson

: .:_'.. ‘
" > : i
\ . £ :,‘)

' p .
e B @ X
.‘.'- ;‘ -‘1 |

BEEEN»ETHEE
EENIFENW2T0
EREE R E = WA

BEENIE EFD



What does this look like?

ﬂ*.ﬂlll

Slide from Justin Johnson
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Nearest Neighbor Decision Boundaries
X1

Nearest neighbors
in two dimensions

Slide from Justin Johnson



Nearest Neighbor Decision Boundaries

X1

Nearest neighbors
in two dimensions

Points are training
examples; colors
give training labels

Slide from Justin Johnson



Nearest Neighbor Decision Boundaries

X1

Nearest neighbors
in two dimensions

Points are training
examples; colors
give training labels

Background colors
give the category
a test point would

be assigned
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Nearest Neighbor Decision Boundaries

X4 .
Decision boundary
is the boundary
between two
classification regions

Nearest neighbors
in two dimensions .

Points are training
examples; colors
give training labels

Background colors
give the category
a test point would
be assigned
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Nearest Neighbor Decision Boundaries

X1

Decision boundary
is the boundary
between two
classification regions

Nearest neighbors
in two dimensions

Points are training
examples; colors
give training labels’

Decision boundaries
can be noisy;
affected by outliers

Background colors
give the category

a test point would
be assigned X
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Nearest Neighbor Decision Boundaries

X1

Decision boundary
is the boundary
between two
classification regions

Nearest neighbors
in two dimensions

Points are training
examples; colors
give training labels’

Decision boundaries
can be noisy;
affected by outliers

Background colors How to smooth out

give the .category kY decision boundaries?
a test point would Use more neighbors!
be assigned Xo

Slide from Justin Johnson



K_ N earest N elgh bO rs Instead of copying label from nearest neighbor,

take majority vote from K closest points

K=1 K=3

Slide from Justin Johnson



Using more neighbors helps smooth
out rough decision boundaries

K-Nearest Neighbors

K=1 K=3
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Using more neighbors helps
reduce the effect of outliers

K-Nearest Neighbors

K=1 K=3

Slide from Justin Johnson



When K > 1 there can be

K- N earest N elgh bO 'S ties between classes.
Need to break somehow!
K=1 K=3

Slide from Justin Johnson



K-Nearest Neighbors: Distance Metric

L1 (Manhattan) distance

di(I1,1;) = z ‘If — 15‘
p

’

AN

AN

/

Slide from Justin Johnson

L2 (Euclidean) distance

dy (11, 1) = (Z (If _15)2>
p

~
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K-Nearest Neighbors: Distance Metric

L1 (Manhattan) distance

di(I1,1;) = 2 ‘If — 15‘
14

Slide from Justin Johnson

1

L2 (Euclidean) distance

d,(I;, ;) = (Z (If _15)2)
p
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K-Nearest Neighbors: Distance Metric

Can get quite creative with the distance function, e.g. bending energy
(how much do you need to transform one example to look like another)

. “ Sout [ oo e
ol &, %”MM% 5
i TR
o} =) ot 2 % “
(%1& o 2% %,

Fig. 1. Examples of two handwritten digits. In terms of pixel-to-pixel o, s ™ i 4;)

comparisons, these two images are quite different, but to the human G\Qq‘ % X {1t & A

observer, the shapes appear to be similar. “ w e, ggl} 2 C/Mof‘"“ @

,, RN A z,
E s - 0\.0; e/;zﬁ_“\%“//} )
=4 ////a
g > %’% i
) A
60} € K’{J{ [l*} }j’{%;o_ﬁér' 0

Fig. 4. lllustration of the matching process applied to the example of Fig. 1. Top row: 1st iteration. Bottom row: 5th iteration. Left column: estimated
correspondences shown relative to the transformed model, with tangent vectors shown. Middle column: estimated correspondences shown relative to
the untransformed model. Right column: result of transforming the model based on the current correspondences; this is the input to the next iteration.
The grid points illustrate the interpolated transformation over R2. Here, we have used a regularized TPS model with ), = 1.

Shape Matching and Object Recognition Using Shape Context Serge Belongie, Jitendra Malik, and Jan Puzicha, PAMI 2002



https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/shape/belongie-pami02.pdf

K-Nearest Neighbors:
Web Demo

Interactively move points around
and see decision boundaries change

Play with L1 vs L2 metrics

Play with changing number of
training points, value of K Metric Num Neighbors (K)

L1 L2 1 2813 N4 5N G T

Num classes Num points

http://vision.stanford.edu/teaching/cs231n-demos/knn/ m

Slide from Justin Johnson


http://vision.stanford.edu/teaching/cs231n-demos/knn/

Hyperparameters

What is the best value of K to use?
What is the best distance metric to use?

These are examples of hyperparameters: choices about our

learning algorithm that we don’t learn from the training
data; instead we set them at the start of the learning process

Slide from Justin Johnson



Hyperparameters

What is the best value of K to use?
What is the best distance metric to use?

These are examples of hyperparameters: choices about our
learning algorithm that we don’t learn from the training
data; instead we set them at the start of the learning process

Very problem-dependent. In general need to try them all and
see what works best for our data / task.

Slide from Justin Johnson



Setting Hyperparameters

Idea #1: Choose hyperparameters
that work best on the training data

BAD: K = 1 always works perfectly on training data (in
general, memorization is sufficient for acing the train set)

train

test

Slide from Justin Johnson



Setting Hyperparameters

Idea #1: Choose hyperparameters BAD: K = 1 always works perfectly on training data (in
that work best on the training data general, memorization is sufficient for acing the train set)

train test

Idea #2: Choose hyperparameters BAD: No idea how algorithm will perform on new
that work best on test data data.

train test
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Setting Hyperparameters

Idea #1: Choose hyperparameters BAD: K = 1 always works perfectly on training data (in
that work best on the training data general, memorization is sufficient for acing the train set)

train test

Idea #2: Choose hyperparameters BAD: No idea how algorithm will perform on new
that work best on test data data.

train test

Idea #3: Split dataset into train and val; choose

Better!
hyperparameters on val and evaluate on test.

train validation test

Slide from Justin Johnson



Setting Hyperparameters

ross-validati
033 C o§s validation gn k

031 . | Example of 5-fold cross-validation for
* | the value of k.

0.30

(=]
N
w0

Each point: single outcome.

0.28 |

The line goes through the mean, bars
indicated standard deviation

Cross-validation accuracy

o
N
~

0.26

(Seems that k ~ 7 works best
. |  for this data)

025

0 24 1 Il Il 1 Il 1
=20 0 20 40 60 80 100 120
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K-Nearest Neighbor: Universal Approximation

As the number of training samples goes to infinity, nearest
neighbor can represent any!®) function!

(*) Subject to many technical conditions. Only continuous functions on a compact domain; need to make assumptions about spacing of training points; etc.

Slide from Justin Johnson



K-Nearest Neighbor: Universal Approximation

As the number of training samples goes to infinity, nearest
neighbor can represent any!®) function!

5 Training points

2.00 A
1.75 1

1.50 1

. —— True function
=100 e Training points
075 —— Nearest Neighbor function

0.50

0.25 1

0.00 A

0.0 0.2 0.4 0.6 0.8 1.0
X

(*) Subject to many technical conditions. Only continuous functions on a compact domain; need to make assumptions about spacing of training points; etc.
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K-Nearest Neighbor: Universal Approximation

As the number of training samples goes to infinity, nearest
neighbor can represent any!®) function!

10 Training points

2.00 1
1.75 1

1.50 1

. —— True function
> 1.00 ® Training points
075 —— Nearest Neighbor function
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0.00 1
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(*) Subject to many technical conditions. Only continuous functions on a compact domain; need to make assumptions about spacing of training points; etc.
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K-Nearest Neighbor: Universal Approximation

As the number of training samples goes to infinity, nearest
neighbor can represent any!®) function!

20 Training points

2.00 A
1.75 1

1.50 1

. —— True function
=100 e Training points
075 —— Nearest Neighbor function

0.50

0.25 1

0.00 A

0.0 0.2 0.4 0.6 0.8 1.0
X

(*) Subject to many technical conditions. Only continuous functions on a compact domain; need to make assumptions about spacing of training points; etc.
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K-Nearest Neighbor: Universal Approximation

As the number of training samples goes to infinity, nearest
neighbor can represent any!®) function!

100 Training points

2.00 A
1.75 1

1.50 1

. —— True function
=100 e Training points
075 —— Nearest Neighbor function

0.50

0.25 1

0.00 A

0.0 0.2 0.4 0.6 0.8 1.0
X

(*) Subject to many technical conditions. Only continuous functions on a compact domain; need to make assumptions about spacing of training points; etc.
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K-Nearest Neighbor on raw pixels is seldom used

Very slow at test time
Distance metrics on pixels are not informative

Original Boxed Shifted Tinted

(all 3 images have same L2 distance to the one on the left)

CCC public domain

Slide from Justin Johnson


https://www.pexels.com/photo/blonde-haired-woman-in-blue-shirt-y-27411/
https://creativecommons.org/publicdomain/zero/1.0/

Nearest Neighbor with ConvNet features works well!

Devlin et al, “Exploring Nearest Neighbor Approaches for Image Captioning”, 2015

Slide from Justin Johnson



Can transfer more than just label!

Image Captioning with Nearest Neighbor

A cat sitting in a
bathroom sink.

A bedroom with a
i bed and a couch.

A wooden bench in
front of a building.

=% A train is stopped at
- a train station.

©

Devlin et al, “Exploring Nearest Neighbor Approaches for Image Captioning”, 2015

Slide from Justin Johnson


https://arxiv.org/pdf/1505.04467.pdf

Can transfer more than just label!

Method BLEU 4
ME + DMSM [8] 56.7
LRCN (6] 534
Vinyals et al. [35] 53.8
Xu et al. [36] 52.3
m-RNN [25] 54.3
MLBL [18], [19] 51.7
NeuralTalk [16] 44.6
fc7-fine (CIDEr) 54.2 (2)
Human 47.1

Image Captioning with Nearest Neighbor

Outperformed many other End-to-
end models at the time.

Devlin et al, “Exploring Nearest Neighbor Approaches for Image Captioning”, 2015



https://arxiv.org/pdf/1505.04467.pdf

Can transfer more than just label!

Exemplar Exemplar Exemplar

Detector w

Detector w

=t | s =

Appearance

3

Malisiewicz et al, “Ensemble of Exemplar-SVMs for Object Detection and Beyond”, ICCV 2011



http://www.cs.cmu.edu/~tmalisie/projects/iccv11/

Can transfer more than just [abel!

Exemplar Exemplar Exemplar

Detector w

Detector w

Detector w

.....

--------

Appearance

Meta-data

Segmentation

EEEEEEEEEEEEEEE R

Malisiewicz et al, “Ensemble of Exemplar-SVMs for Object Detection and Beyond”, ICCV 2011



http://www.cs.cmu.edu/~tmalisie/projects/iccv11/

Lecture overview

e Different problems in computer vision
e Supervised classification

* Beyond supervised classification: A taxonomy of prediction
problems and types of supervision

* Image classification
* k-Nearest Neighbors



