
Linear Classifiers

CS 444: Deep Learning for Computer Vision
Saurabh Gupta

Slides from Lana Lazebnik

Outline
• Examples of classification models: nearest neighbor, linear
• Empirical loss minimization framework
• Linear classification models

1. Linear regression
2. Logistic regression
3. Perceptron training algorithm
4. Support vector machines

Recall: The basic supervised learning framework

𝑦 = 𝑓(𝑥)

• Training (or learning): given a training set of labeled examples
{(𝑥1, 𝑦1), … , (𝑥𝑁, 𝑦!)}, instantiate a predictor 𝑓

• Testing (or inference): apply 𝑓 to a new test example 𝑥 and output the
predicted value 𝑦 = 𝑓(𝑥)

output prediction
function

input

Nearest neighbor classifier

𝑓(𝑥) = label of the training example nearest to 𝑥

• All we need is a distance function for our inputs
• No training required!

Test
example

Training
examples

from class 1

Training
examples

from class 2

Linear classifier

• Find a linear function to separate the classes:

𝑓 𝑥 = sgn 𝑤(")𝑥(") +𝑤($)𝑥($) +⋯+𝑤(%)𝑥(%) + 𝑏 = sgn 𝑤 × 𝑥 + 𝑏

Visualizing linear classifiers

Body wave magnitude

Su
rfa

ce
 w

av
e

m
ag

ni
tu

de

Nuclear explosions

Earthquakes

Seismic data classification

Visualizing linear classifiers

Source: http://cs231n.github.io/linear-classify/

http://cs231n.github.io/linear-classify/

Linear classifier: Perceptron view

𝑥(")

𝑥($)

𝑥(%)

𝑤(")

𝑤($)

𝑤(&)
𝑥(&)

𝑤(%)

Input

Weights

.

.

.

Output: sgn(𝑤×𝑥 + 𝑏)

Loose inspiration: Biological neurons

NN vs. linear classifiers: Pros and cons
• NN pros:

+ Simple to implement
+ Decision boundaries not necessarily linear
+ Works for any number of classes
+ Nonparametric method

• NN cons:
- Need good distance function
- Slow at test time

• Linear pros:
+ Low-dimensional parametric representation
+ Very fast at test time

• Linear cons:
- Works for two classes
- How to train the linear function?
- What if data is not linearly separable?

Outline
• Examples of classification models: nearest neighbor, linear
• Empirical loss minimization framework

Empirical loss minimization
• Let’s formalize the setting for learning of a parametric model

in a supervised scenario

Image source

https://codesachin.wordpress.com/2015/08/16/logistic-regression-for-dummies/

Empirical loss minimization
• Given: training data 𝑥& , 𝑦& , 𝑖 = 1,… , 𝑛
• Find: predictor 𝑓
• Goal: make good predictions 3𝑦 = 𝑓(𝑥) on test data

Source: Y. Liang

https://www.cs.princeton.edu/courses/archive/spring16/cos495/slides/ML_basics_lecture1_linear_regression.pdf

Empirical loss minimization
• Given: training data 𝑥& , 𝑦& , 𝑖 = 1,… , 𝑛
• Find: predictor 𝑓
• Goal: make good predictions 3𝑦 = 𝑓(𝑥) on test data

Source: Y. Liang

What kinds of functions?

https://www.cs.princeton.edu/courses/archive/spring16/cos495/slides/ML_basics_lecture1_linear_regression.pdf

Empirical loss minimization
• Given: training data 𝑥& , 𝑦& , 𝑖 = 1,… , 𝑛
• Find: predictor 𝑓 ∈ ℋ
• Goal: make good predictions 3𝑦 = 𝑓(𝑥) on test data

Source: Y. Liang

Hypothesis class

https://www.cs.princeton.edu/courses/archive/spring16/cos495/slides/ML_basics_lecture1_linear_regression.pdf

Empirical loss minimization
• Given: training data 𝑥& , 𝑦& , 𝑖 = 1,… , 𝑛
• Find: predictor 𝑓 ∈ ℋ
• Goal: make good predictions 3𝑦 = 𝑓(𝑥) on test data

Source: Y. Liang

Connection between
training and test data?

https://www.cs.princeton.edu/courses/archive/spring16/cos495/slides/ML_basics_lecture1_linear_regression.pdf

Empirical loss minimization
• Given: training data 𝑥& , 𝑦& , 𝑖 = 1,… , 𝑛 i.i.d. from distribution 𝐷
• Find: predictor 𝑓 ∈ ℋ
• Goal: make good predictions 3𝑦 = 𝑓(𝑥) on test data

i.i.d. from distribution 𝐷

Source: Y. Liang

https://www.cs.princeton.edu/courses/archive/spring16/cos495/slides/ML_basics_lecture1_linear_regression.pdf

Empirical loss minimization
• Given: training data 𝑥& , 𝑦& , 𝑖 = 1,… , 𝑛 i.i.d. from distribution 𝐷
• Find: predictor 𝑓 ∈ ℋ
• Goal: make good predictions 3𝑦 = 𝑓(𝑥) on test data

i.i.d. from distribution 𝐷

Source: Y. Liang

What kind of performance
measure?

https://www.cs.princeton.edu/courses/archive/spring16/cos495/slides/ML_basics_lecture1_linear_regression.pdf

Empirical loss minimization
• Given: training data 𝑥& , 𝑦& , 𝑖 = 1,… , 𝑛 i.i.d. from distribution 𝐷
• Find: predictor 𝑓 ∈ ℋ
• S.t. the expected loss is small:

𝐿 𝑓 = 𝔼(',))∽%[𝑙 𝑓, 𝑥, 𝑦]

Source: Y. Liang

Various loss functions

https://www.cs.princeton.edu/courses/archive/spring16/cos495/slides/ML_basics_lecture1_linear_regression.pdf

Empirical loss minimization
• Given: training data 𝑥& , 𝑦& , 𝑖 = 1,… , 𝑛 i.i.d. from distribution 𝐷
• Find: predictor 𝑓 ∈ ℋ
• S.t. the expected loss is small:

𝐿 𝑓 = 𝔼(',))∽% 𝑙 𝑓, 𝑥, 𝑦
• Example losses:

0 − 1 loss: 𝑙 𝑓, 𝑥, 𝑦 = 𝕀[𝑓(𝑥) ≠ 𝑦] and 𝐿 𝑓 = Pr[𝑓(𝑥) ≠ 𝑦]

𝑙$ loss: 𝑙 𝑓, 𝑥, 𝑦 = [𝑓 𝑥 − 𝑦]$ and 𝐿 𝑓 = 𝔼 [𝑓 𝑥 − 𝑦]$

Source: Y. Liang

https://www.cs.princeton.edu/courses/archive/spring16/cos495/slides/ML_basics_lecture1_linear_regression.pdf

Empirical loss minimization
• Given: training data 𝑥& , 𝑦& , 𝑖 = 1,… , 𝑛 i.i.d. from distribution 𝐷
• Find: predictor 𝑓 ∈ ℋ
• S.t. the expected loss is small:

𝐿 𝑓 = 𝔼(',))∽% 𝑙 𝑓, 𝑥, 𝑦

Source: Y. Liang

Can’t optimize this directly

https://www.cs.princeton.edu/courses/archive/spring16/cos495/slides/ML_basics_lecture1_linear_regression.pdf

Empirical loss minimization
• Given: training data 𝑥& , 𝑦& , 𝑖 = 1,… , 𝑛 i.i.d. from distribution 𝐷
• Find: predictor 𝑓 ∈ ℋ that minimizes

<𝐿 𝑓 =
1
𝑛
=
&+"

,

𝑙(𝑓, 𝑥& , 𝑦&)

Source: Y. Liang

Empirical loss

https://www.cs.princeton.edu/courses/archive/spring16/cos495/slides/ML_basics_lecture1_linear_regression.pdf

Supervised learning in a nutshell
1. Collect training data and labels
2. Specify model: select hypothesis class and loss function
3. Train model: find the function in the hypothesis class that

minimizes the empirical loss on the training data

Outline
• Example classification models: nearest neighbor, linear
• Empirical loss minimization
• Linear classification models

1. Linear regression
2. Logistic regression
3. Perceptron training algorithm
4. Support vector machines

Training linear classifiers
• Given: i.i.d. training data 𝑥& , 𝑦& , 𝑖 = 1,… , 𝑛 ,

𝑦& ∈ {−1,1}
• Hypothesis class: 𝑓-(𝑥) = sgn(𝑤.𝑥)

• Classification with bias, i.e. 𝑓- 𝑥 = sgn(𝑤.𝑥 + 𝑏),
can be reduced to the case w/o bias by letting
A𝑤 = 𝑤; 𝑏 and C𝑥 = [𝑥; 1]

Source: Y. Liang

https://www.cs.princeton.edu/courses/archive/spring16/cos495/slides/ML_basics_lecture1_linear_regression.pdf

Training linear classifiers
• Given: i.i.d. training data 𝑥& , 𝑦& , 𝑖 = 1,… , 𝑛 ,

𝑦& ∈ {−1,1}
• Hypothesis class: 𝑓-(𝑥) = sgn(𝑤.𝑥)
• Loss: how about minimizing the number of mistakes on the

training data?

<𝐿 𝑓- =
1
𝑛
=
&+"

,

𝕀[sgn 𝑤.𝑥& ≠ 𝑦&]

• Difficult to optimize directly (NP-hard), so people resort to
surrogate loss functions

Source: Y. Liang

https://www.cs.princeton.edu/courses/archive/spring16/cos495/slides/ML_basics_lecture1_linear_regression.pdf

Linear regression (“straw man” model)
• Find 𝑓-(𝑥) = 𝑤.𝑥 that minimizes 𝑙$ loss or mean squared

error

<𝐿 𝑓- =
1
𝑛
=
&+"

,

(𝑤.𝑥& − 𝑦&)$

• Ignores the fact that 𝑦 ∈ {−1,1} but is easy to optimize

Source: Y. Liang

https://www.cs.princeton.edu/courses/archive/spring16/cos495/slides/ML_basics_lecture1_linear_regression.pdf

Linear regression: Optimization
• Let 𝑋 be a matrix whose ith row is 𝑥&., 𝑌 be the vector
(𝑦", … , 𝑦,).

<𝐿 𝑓- =
1
𝑛
=
&+"

,

(𝑤.𝑥& − 𝑦&)$ =
1
𝑛
𝑋𝑤 − 𝑌 $

$

Source: Y. Liang

https://www.cs.princeton.edu/courses/archive/spring16/cos495/slides/ML_basics_lecture1_linear_regression.pdf

Linear regression: Optimization
• Let 𝑋 be a matrix whose ith row is 𝑥&., 𝑌 be the vector
(𝑦", … , 𝑦,).

<𝐿 𝑓- =
1
𝑛
=
&+"

,

(𝑤.𝑥& − 𝑦&)$ =
1
𝑛
𝑋𝑤 − 𝑌 $

$

• This is a convex function of the weights

Source: Y. Liang

https://www.cs.princeton.edu/courses/archive/spring16/cos495/slides/ML_basics_lecture1_linear_regression.pdf

Linear regression: Optimization
• Let 𝑋 be a matrix whose ith row is 𝑥&., 𝑌 be the vector
(𝑦", … , 𝑦,).

<𝐿 𝑓- =
1
𝑛
=
&+"

,

(𝑤.𝑥& − 𝑦&)$ =
1
𝑛
𝑋𝑤 − 𝑌 $

$

• Find the gradient w.r.t. 𝑤:
∇- 𝑋𝑤 − 𝑌 $

$

Source: Y. Liang

https://www.cs.princeton.edu/courses/archive/spring16/cos495/slides/ML_basics_lecture1_linear_regression.pdf

Linear regression: Optimization
• Let 𝑋 be a matrix whose ith row is 𝑥&., 𝑌 be the vector
(𝑦", … , 𝑦,).

<𝐿 𝑓- =
1
𝑛
=
&+"

,

(𝑤.𝑥& − 𝑦&)$ =
1
𝑛
𝑋𝑤 − 𝑌 $

$

• Find the gradient w.r.t. 𝑤:
∇- 𝑋𝑤 − 𝑌 $

$ = ∇- 𝑋𝑤 − 𝑌 . 𝑋𝑤 − 𝑌
= ∇- 𝑤.𝑋.𝑋𝑤 − 2𝑤.𝑋.𝑌 + 𝑌.𝑌
= 2𝑋.𝑋𝑤 − 2𝑋.𝑌

• Set gradient to zero to get the minimizer:
𝑋.𝑋𝑤 = 𝑋.𝑌

𝑤 = (𝑋.𝑋)/"𝑋.𝑌
Source: Y. Liang

https://www.cs.princeton.edu/courses/archive/spring16/cos495/slides/ML_basics_lecture1_linear_regression.pdf

Linear regression: Optimization
• Linear algebra view

• If 𝑋 is invertible, simply solve 𝑋𝑤 = 𝑌 and get 𝑤 = 𝑋%&𝑌
• But typically 𝑋 is a “tall” matrix so you need to find the least

squares solution to an over-constrained system

Source: Y. Liang

https://www.cs.princeton.edu/courses/archive/spring16/cos495/slides/ML_basics_lecture1_linear_regression.pdf

Linear regression as maximum likelihood estimation
• Interpretation of 𝑙$ loss: negative log likelihood assuming
𝑦 is normally distributed with mean 𝑓- 𝑥 = 𝑤.𝑥 + 𝑏

(xi, yi)
y = wTx + b

𝑃 𝑦 𝑥 = Normal(𝑦;𝑤𝑇𝑥 + 𝑏, 𝜎$)

Maximum likelihood estimation
• Given: i.i.d. training data 𝑥& , 𝑦& , 𝑖 = 1,… , 𝑛
• Let 𝑃0 𝑦 𝑥 , 𝜃 ∈ Θ be a family of distributions parameterized

by 𝜃
• Maximum (conditional) likelihood estimate:

𝜃12 = argmax0Q
&
𝑃0(𝑦&|𝑥&)

= argmin0 − ∑& log 𝑃0(𝑦&|𝑥&)

Maximum likelihood estimation
𝜃12 = argmin0 − ∑& log 𝑃0(𝑦&|𝑥&)

• Assume 𝑃0 𝑦 𝑥 = Normal(𝑦; 𝑓0 𝑥 , 𝜎$)

log 𝑃0 𝑦 𝑥 = log
1
2𝜋𝜎$

exp −
𝑦 − 𝑓0 𝑥

$

2𝜎$

= −
1
2𝜎$

𝑦 − 𝑓0 𝑥 $ − log 𝜎 −
1
2
log(2𝜋)

𝜃12 = argmin0=
&

𝑦& − 𝑓0 𝑥&
$

Linear regression as maximum likelihood estimation
• Interpretation of 𝑙$ loss: negative log likelihood assuming 𝑦 is

normally distributed with mean 𝑓- 𝑥 = 𝑤.𝑥 + 𝑏

• Does this make sense for binary classification?

(xi, yi)
y = wTx + b

𝑃 𝑦 𝑥 = Normal(𝑦;𝑤𝑇𝑥 + 𝑏, 𝜎$)

Problem with linear regression
• In practice, very sensitive to outliers

Figure from Pattern Recognition and Machine Learning, Bishop

Problem with linear regression
• In practice, very sensitive to outliers

+1

-1

• Instead of a linear function, how about we fit a function
representing the confidence of the classifier?

Next idea

1

0

𝑃(𝑦 = 1|𝑥)

0.5

Linear classifiers: Outline
• Example classification models: nearest neighbor, linear
• Empirical loss minimization
• Linear classification models

1. Linear regression (least squares)
2. Logistic regression

Logistic regression
• Let’s learn a probabilistic classifier estimating the probability

of the input 𝑥 having a positive label, given by putting a
sigmoid function around the linear response 𝑤.𝑥:

𝑃- 𝑦 = 1 𝑥 = 𝜎 𝑤.𝑥 = "
"3456(/-!')

Sigmoid: Properties

𝑃- 𝑦 = 1 𝑥 = 𝜎 𝑤.𝑥 =
1

1 + exp(−𝑤.𝑥)
• What is the range?
• What is 𝜎 0 ?
• What is 𝑃- 𝑦 = −1 𝑥 ?

Sigmoid: Properties

𝑃- 𝑦 = 1 𝑥 = 𝜎 𝑤.𝑥 =
1

1 + exp(−𝑤.𝑥)
• What is the range?
• What is 𝜎 0 ?
• What is 𝑃- 𝑦 = −1 𝑥 ?

𝑃- 𝑦 = −1 𝑥 = 1 − 𝑃- 𝑦 = 1 𝑥 = 1 − 𝜎 𝑤.𝑥

= "3456 /-!' /"
"3456 /-!'

= 456(/-!')
"3456(/-!')

= "
456 -!' 3"

= 𝜎 −𝑤.𝑥

Sigmoid: Properties

𝑃- 𝑦 = 1 𝑥 = 𝜎 𝑤.𝑥 =
1

1 + exp(−𝑤.𝑥)

• Sigmoid is symmetric in the following sense: 1 − 𝜎 𝑡 = 𝜎 −𝑡

Sigmoid: Properties

𝑃- 𝑦 = 1 𝑥 = 𝜎 𝑤.𝑥 =
1

1 + exp(−𝑤.𝑥)

• What happens if we scale 𝑤 by a constant?

Sigmoid: Properties

𝑃- 𝑦 = 1 𝑥 = 𝜎 𝑤.𝑥 =
1

1 + exp(−𝑤.𝑥)

• What happens if we scale 𝑤 by a constant?

Image source

https://i.stack.imgur.com/KcX81.png

Logistic loss
• Given: 𝑥& , 𝑦& , 𝑖 = 1,… , 𝑛 , 𝑦& ∈ {−1,1}
• Maximum (conditional) likelihood estimate: find 𝑤 that minimizes

<𝐿 𝑤 = −
1
𝑛
=
&+"

,

log 𝑃- 𝑦& 𝑥&

𝑙 𝑤, 𝑥& , 𝑦& = − log𝑃- 𝑦& 𝑥&
• If 𝑦& = 1:

𝑃- 𝑦& 𝑥& =𝜎 𝑤.𝑥&
• If 𝑦& = −1:

𝑃- 𝑦& 𝑥& =1 − 𝜎 𝑤.𝑥& = 𝜎 −𝑤.𝑥&
• Thus,

𝑙 𝑤, 𝑥& , 𝑦& = − log 𝜎 𝑦&𝑤.𝑥&

Logistic loss
𝑙 𝑤, 𝑥& , 𝑦& = − log 𝜎 𝑦&𝑤.𝑥&

Figure source𝑦'𝑤(𝑥'

http://www.cs.toronto.edu/~rgrosse/courses/csc321_2017/slides/lec4.pdf

Logistic loss: Optimization
• Given: 𝑥& , 𝑦& , 𝑖 = 1,… , 𝑛 , 𝑦& ∈ {−1,1}
• Find 𝑤 that minimizes

<𝐿 𝑤 = −
1
𝑛
=
&+"

,

log 𝑃- 𝑦& 𝑥&

• There is no closed-form expression for the minimum and we
need to use gradient descent to find it

Gradient descent
• Goal: find 𝑤 to minimize loss <𝐿(𝑤)
• Start with some initial estimate of 𝑤
• Repeat until convergence:

• Find ∇B𝐿(𝑤), the gradient of the loss w.r.t. 𝑤
• Take a small step in the opposite direction: 𝑤 ← 𝑤 − 𝜂 ∇B𝐿(𝑤)

The gradient vector

𝑤&

𝑤$

𝑤

∇B𝐿(𝑤)

Fastest rate
of increase

B𝐿(𝑤)

B𝐿

The gradient vector

𝑤&

𝑤$

𝑤−∇B𝐿(𝑤)

B𝐿

Fastest rate of
decrease

B𝐿(𝑤)

Gradient descent

𝑤&

𝑤$

𝑤 − 𝜂∇B𝐿(𝑤)

B𝐿(𝑤 − 𝜂∇B𝐿(𝑤))

B𝐿

Gradient descent
• Goal: find 𝑤 to minimize loss <𝐿(𝑤)
• Start with some initial estimate of 𝑤
• Repeat until convergence:

• Find ∇B𝐿(𝑤), the gradient of the loss w.r.t. 𝑤
• Take a small step in the opposite direction: 𝑤 ← 𝑤 − 𝜂 ∇B𝐿(𝑤)

𝑤"
𝑤$

B𝐿

Gradient descent
• Goal: find 𝑤 to minimize loss <𝐿(𝑤)
• Start with some initial estimate of 𝑤
• Repeat until convergence:

• Find ∇B𝐿(𝑤), the gradient of the loss w.r.t. 𝑤
• Take a small step in the opposite direction: 𝑤 ← 𝑤 − 𝜂 ∇B𝐿(𝑤)
• 𝜂 is the step size or learning rate

Figure source

https://www.slideshare.net/ssuserf88631/scalable-machine-learning-73621818

Full batch gradient descent
• Since <𝐿 𝑤 = "

,
∑&+", 𝑙 𝑤, 𝑥& , 𝑦& , we have

∇<𝐿 𝑤 =
1
𝑛
=
&+"

,

∇𝑙 𝑤, 𝑥& , 𝑦&

• For a single parameter update, need to cycle through the
entire training set!

Stochastic gradient descent (SGD)
• At each iteration, take a single data point 𝑥& , 𝑦& and perform

a parameter update using ∇𝑙 𝑤, 𝑥& , 𝑦& , the gradient of the
loss for that point:

𝑤 ← 𝑤 − 𝜂 ∇𝑙 𝑤, 𝑥& , 𝑦&
• This is called an online or stochastic update
• In practice, mini-batch SGD is typically used:

• Group data into mini-batches of size 𝑏
• Compute gradient of the loss for the mini-batch 𝑥!, 𝑦! , … , (𝑥", 𝑦"):

∇B𝐿 =
1
𝑏
E
78&

9

∇𝑙(𝑤, 𝑥7, 𝑦7)

• Update parameters: 𝑤 ← 𝑤 − 𝜂∇B𝐿

SGD for logistic regression
𝑙 𝑤, 𝑥& , 𝑦& = − log 𝜎 𝑦&𝑤.𝑥&

• Let’s find the gradient:
∇𝑙 𝑤, 𝑥& , 𝑦& = −∇- log 𝜎 𝑦&𝑤.𝑥&

= −
∇-𝜎 𝑦&𝑤.𝑥&
𝜎 𝑦&𝑤.𝑥&

• Derivative of log:

log 𝑔 𝑎 : =
𝑔′(𝑎)
𝑔(𝑎)

SGD for logistic regression
𝑙 𝑤, 𝑥& , 𝑦& = − log 𝜎 𝑦&𝑤.𝑥&

• Let’s find the gradient:
∇𝑙 𝑤, 𝑥& , 𝑦& = −∇- log 𝜎 𝑦&𝑤.𝑥&

= −
∇-𝜎 𝑦&𝑤.𝑥&
𝜎 𝑦&𝑤.𝑥&

= −
𝜎 𝑦&𝑤.𝑥& 𝜎 −𝑦&𝑤.𝑥& 𝑦&𝑥&

𝜎 𝑦&𝑤.𝑥&
Derivative of sigmoid:

𝜎: 𝑎 = 𝜎 𝑎 1 − 𝜎(𝑎) = 𝜎 𝑎 𝜎 −𝑎

SGD for logistic regression
𝑙 𝑤, 𝑥& , 𝑦& = − log 𝜎 𝑦&𝑤.𝑥&

• Let’s find the gradient:
∇𝑙 𝑤, 𝑥& , 𝑦& = −∇- log 𝜎 𝑦&𝑤.𝑥&

= −
∇-𝜎 𝑦&𝑤.𝑥&
𝜎 𝑦&𝑤.𝑥&

= −
𝜎 𝑦&𝑤.𝑥& 𝜎 −𝑦&𝑤.𝑥& 𝑦&𝑥&

𝜎 𝑦&𝑤.𝑥&
• We also used the chain rule: 𝑔$ 𝑔" 𝑎

:
= 𝑔$: 𝑔" 𝑎 𝑔":(𝑎)

SGD for logistic regression
𝑙 𝑤, 𝑥& , 𝑦& = − log 𝜎 𝑦&𝑤.𝑥&

• Let’s find the gradient:
∇𝑙 𝑤, 𝑥& , 𝑦& = −∇- log 𝜎 𝑦&𝑤.𝑥&

= −
∇-𝜎 𝑦&𝑤.𝑥&
𝜎 𝑦&𝑤.𝑥&

= −
𝜎 𝑦&𝑤.𝑥& 𝜎 −𝑦&𝑤.𝑥& 𝑦&𝑥&

𝜎 𝑦&𝑤.𝑥&
= −𝜎 −𝑦&𝑤.𝑥& 𝑦&𝑥&

• SGD update:
𝑤 ← 𝑤 + 𝜂 𝜎 −𝑦&𝑤.𝑥& 𝑦&𝑥&

SGD for logistic regression
• Let’s take a closer look at the SGD update:

𝑤 ← 𝑤 + 𝜂 𝜎 −𝑦&𝑤.𝑥& 𝑦&𝑥&
• What happens if 𝑥& is incorrectly, but confidently, classified?

• The update rule approaches 𝑤 ← 𝑤 + 𝜂 𝑦7𝑥7
• What happens if 𝑥& is correctly, and confidently, classified?

• The update approaches zero (but never actually reaches zero)

SGD for logistic regression
• Logistic regression does not converge for linearly separable

data!
• Scaling 𝑤 by ever larger constants makes the classifier more

confident and keeps increasing the likelihood of the data

Image source

https://i.stack.imgur.com/KcX81.png

SGD for logistic regression
• Logistic regression does not converge for linearly separable

data!
• Scaling 𝑤 by ever larger constants makes the classifier more

confident and keeps increasing the likelihood of the data

Source: J. Johnson

https://web.eecs.umich.edu/~justincj/slides/eecs498/WI2022/598_WI2022_lecture04.pdf

Sigmoid: Interpretation
• We can write out the connection between the posteriors
𝑃(𝑦|𝑥) and the class-conditional densities 𝑃 𝑥 𝑦 :

𝑃 𝑦 = 1 𝑥 =
𝑃 𝑥 𝑦 = 1 𝑃 𝑦 = 1

𝑃(𝑥)

=
𝑃 𝑥 𝑦 = 1 𝑃 𝑦 = 1

𝑃 𝑥 𝑦 = 1 𝑃 𝑦 = 1 + 𝑃 𝑥 𝑦 = −1 𝑃(𝑦 = −1)

=
1

1 + exp(−𝑎)
= 𝜎(𝑎), 𝑎 = log

𝑃(𝑦 = 1|𝑥)
𝑃(𝑦 = −1|𝑥)

Sigmoid: Interpretation
• Adopting a linear + sigmoid model is equivalent to assuming

linear log odds:

log
𝑃(𝑦 = 1|𝑥)
𝑃(𝑦 = −1|𝑥)

= 𝑤.𝑥 + 𝑏

• This happens when 𝑃 𝑥 𝑦 = 1 and
𝑃 𝑥 𝑦 = −1 are Gaussians with different
means and the same covariance matrices
(𝑤 is related to the difference between
the means)

Linear classifiers: Outline
• Example classification models: nearest neighbor, linear
• Empirical loss minimization
• Linear classification models

1. Linear regression (least squares)
2. Logistic regression
3. Perceptron loss

Recall: The shape of logistic loss
𝑙 𝑤, 𝑥& , 𝑦& = − log 𝜎 𝑦&𝑤.𝑥&

Figure source𝑦'𝑤(𝑥'

Approaches 0

Approaches
− 𝑦'𝑤(𝑥'

http://www.cs.toronto.edu/~rgrosse/courses/csc321_2017/slides/lec4.pdf

Perceptron
• Let’s define the perceptron hinge loss:

𝑙 𝑤, 𝑥& , 𝑦& = max 0,−𝑦&𝑤.𝑥&

𝑦'𝑤(𝑥'

Incorrectly
classified

Correctly
classified

Perceptron hinge loss

Perceptron
• Let’s define the perceptron hinge loss:

𝑙 𝑤, 𝑥& , 𝑦& = max 0,−𝑦&𝑤.𝑥&

• Training: find 𝑤 that minimizes

<𝐿 𝑤 =
1
𝑛
=
&+"

,

𝑙 𝑤, 𝑥& , 𝑦& =
1
𝑛
=
&+"

,

max 0,−𝑦&𝑤.𝑥&

• Once again, there is no closed-form solution, so let’s go
straight to SGD

Deriving the perceptron update
• Let’s differentiate the perceptron hinge loss:

𝑙 𝑤, 𝑥& , 𝑦& = max 0,−𝑦&𝑤.𝑥&
(Strictly speaking, this loss is not differentiable, so we need to
find a sub-gradient: A vector 𝑔 ∈ 𝑅, is a sub-gradient of 𝑓: 𝑅, →
𝑅 at 𝑥 if for all 𝑧, 𝑓 𝑧 ≥ 𝑓 𝑥 + 𝑔.(𝑧 − 𝑥).)

𝑦'𝑤(𝑥'

Incorrectly
classified

Correctly
classified

Deriving the perceptron update
• Let’s differentiate the perceptron hinge loss:

𝑙 𝑤, 𝑥& , 𝑦& = max 0,−𝑦&𝑤.𝑥&
∇𝑙 𝑤, 𝑥& , 𝑦& = −𝕀[𝑦&𝑤.𝑥& < 0]𝑦&𝑥&

;
;<
max 0, 𝑎 = 𝕀[𝑎 > 0]

𝑦'𝑤(𝑥'

Incorrectly
classified

Correctly
classified

Deriving the perceptron update
• Let’s differentiate the perceptron hinge loss:

𝑙 𝑤, 𝑥& , 𝑦& = max 0,−𝑦&𝑤.𝑥&
∇𝑙 𝑤, 𝑥& , 𝑦& = −𝕀[𝑦&𝑤.𝑥& < 0]𝑦&𝑥&

• We also used the chain rule: 𝑔$ 𝑔" 𝑎
: = 𝑔$: 𝑔" 𝑎 𝑔":(𝑎)

Deriving the perceptron update
• Let’s differentiate the perceptron hinge loss:

𝑙 𝑤, 𝑥& , 𝑦& = max 0,−𝑦&𝑤.𝑥&
∇𝑙 𝑤, 𝑥& , 𝑦& = −𝕀[𝑦&𝑤.𝑥& < 0]𝑦&𝑥&

• Corresponding SGD update (𝑤 ← 𝑤 − 𝜂 ∇𝑙 𝑤, 𝑥& , 𝑦&):
𝑤 ← 𝑤 + 𝜂 𝕀[𝑦&𝑤.𝑥& < 0]𝑦&𝑥&

• If 𝑥7 is correctly classified: do nothing
• If 𝑥7 is incorrectly classified: 𝑤 ← 𝑤 + 𝜂 𝑦7𝑥7

Understanding the perceptron update rule
• Perceptron update rule: If 𝑦& ≠ sgn(𝑤.𝑥&) then update weights:

𝑤 ← 𝑤 + 𝜂 𝑦&𝑥&

• The raw response of the classifier changes to

𝑤.𝑥& + 𝜂 𝑦& 𝑥& $

• How does the response change if 𝑦& = 1?
• The response 𝑤;𝑥7 is initially negative and will be increased

• How does the response change if 𝑦& = −1?
• The response 𝑤;𝑥7 is initially positive and will be decreased

Linear classifiers: Outline
• Example classification models: nearest neighbor, linear
• Empirical loss minimization
• Linear classification models

1. Linear regression (least squares)
2. Logistic regression
3. Perceptron loss
4. Support vector machine (SVM) loss

• When the data is linearly separable, which of the many
possible solutions should we prefer?

• Perceptron training algorithm:
no special criterion, solution depends
on initialization

Support vector machines

• When the data is linearly separable, which of the many
possible solutions should we prefer?

• Perceptron training algorithm:
no special criterion, solution depends
on initialization

• SVM criterion: maximize the margin,
or distance between the hyperplane
and the closest training example

Support vector machines

Margin

Support
vectors

Separating
hyperplane

• We want to maximize the margin, or distance between the
hyperplane 𝑤.𝑥 = 0 and the closest training example 𝑥=

• This distance is given by |-
!'"|
-

(for derivation see, e.g., here)
• Assuming the data is linearly

separable, we can fix the scale of 𝑤
so that 𝑦&𝑤.𝑥& = 1 for support vectors
and 𝑦&𝑤.𝑥& ≥ 1 for all other points

• Then the margin is given by "
-

Finding the maximum margin hyperplane

https://math.stackexchange.com/questions/1210545/distance-from-a-point-to-a-hyperplane

Finding the maximum margin hyperplane
• We want to maximize margin "

-
while correctly classifying all

training data: 𝑦&𝑤.𝑥& ≥ 1
• Equivalent problem:

min-
1
2
𝑤 $ s. t. 𝑦&𝑤.𝑥& ≥ 1 ∀𝑖

• This is a quadratic objective with linear constraints: convex
optimization problem, global optimum can be found using
well-studied methods

“Soft margin” formulation
• What about non-separable data?
• And even for separable data, we may prefer a larger margin

with a few constraints violated

Source

http://www.robots.ox.ac.uk/~az/lectures/ml/lect2.pdf

“Soft margin” formulation
• What about non-separable data?
• And even for separable data, we may prefer a larger margin

with a few constraints violated

Source

http://www.robots.ox.ac.uk/~az/lectures/ml/lect2.pdf

“Soft margin” formulation
• Penalize margin violations using SVM hinge loss:

min-
𝜆
2
𝑤 $ + =

&+"

,

max[0,1 −𝑦&𝑤.𝑥&]

+1

-1
0

𝑦!𝑤"𝑥!

Incorrectly
classified

Correctly
classified

(1,0)

(0,1)

Hinge loss

“Soft margin” formulation
• Penalize margin violations using SVM hinge loss:

min-
𝜆
2
𝑤 $ + =

&+"

,

max[0,1 −𝑦&𝑤.𝑥&]

+1

-1
0

𝑦!𝑤"𝑥!

Incorrectly
classified

Correctly
classified

(1,0)

(0,1)

Hinge loss

Recall hinge loss used by the
perceptron update algorithm!

“Soft margin” formulation
• Penalize margin violations using SVM hinge loss:

min-
𝜆
2
𝑤 $ + =

&+"

,

max[0,1 −𝑦&𝑤.𝑥&]

Maximize margin –
a.k.a. regularization

Minimize misclassification loss

SGD update for SVM

𝑙 𝑤, 𝑥& , 𝑦& = ?
$,

𝑤 $ +max[0, 1 − 𝑦&𝑤.𝑥&]

∇𝑙 𝑤, 𝑥& , 𝑦& = ?
,
𝑤 − 𝕀[𝑦&𝑤.𝑥& < 1]𝑦&𝑥&

Recall: ;
;<
max 0, 𝑎 = 𝕀[𝑎 > 0]

SGD update for SVM

𝑙 𝑤, 𝑥& , 𝑦& = ?
$,

𝑤 $ +max[0, 1 − 𝑦&𝑤.𝑥&]

∇𝑙 𝑤, 𝑥& , 𝑦& = ?
,
𝑤 − 𝕀[𝑦&𝑤.𝑥& < 1]𝑦&𝑥&

• SGD update:
• If 𝑦7𝑤;𝑥7 ≥ 1: 𝑤 ← 𝑤 −𝜂 <=𝑤

• If 𝑦7𝑤;𝑥7 < 1: 𝑤 ← 𝑤 + 𝜂 𝑦7𝑥7 −
<
=
𝑤

S. Shalev-Schwartz et al., Pegasos: Primal Estimated sub-GrAdient
SOlver for SVM, Mathematical Programming, 2011

http://ttic.uchicago.edu/~nati/Publications/PegasosMPB.pdf

Linear classifiers: Outline
• Examples of classification models: nearest neighbor, linear
• Empirical loss minimization framework
• Linear classification models

1. Linear regression
2. Logistic regression
3. Perceptron training algorithm
4. Support vector machines

• General recipe: data loss, regularization

General recipe
• Find parameters 𝑤 that minimize the sum of a regularization

loss and a data loss:

<𝐿 𝑤 = 𝜆𝑅 𝑤 +
1
𝑛
=
&+"

,

𝑙(𝑤, 𝑥& , 𝑦&)
empirical loss data lossregularization

L2 regularization:

𝑅(𝑤) =
1
2
𝑤 $

$

Closer look at L2 regularization

• Regularized objective: <𝐿(𝑤) = ?
$
𝑤 $

$ + ∑&+", 𝑙(𝑤, 𝑥& , 𝑦&)

• Gradient of objective:

∇<𝐿(𝑤) = 𝜆𝑤 +=
&+"

,

∇𝑙(𝑤, 𝑥& , 𝑦&)

• SGD update:

𝑤 ← 𝑤 − 𝜂
𝜆
𝑛
𝑤 + ∇𝑙 𝑤, 𝑥& , 𝑦&

𝑤 ← 1 −
𝜂𝜆
𝑛

𝑤 − 𝜂∇𝑙 𝑤, 𝑥& , 𝑦&

• Interpretation: weight decay

General recipe
• Find parameters 𝑤 that minimize the sum of a regularization

loss and a data loss:

<𝐿 𝑤 = 𝜆𝑅 𝑤 +
1
𝑛
=
&+"

,

𝑙(𝑤, 𝑥& , 𝑦&)
empirical loss data lossregularization

L2 regularization:

𝑅(𝑤) =
1
2
𝑤 $

$

L1 regularization:
𝑅(𝑤) = 𝑤 &

Closer look at L1 regularization
• Regularized objective:

<𝐿 𝑤 = 𝜆 𝑤 " +=
&+"

,

𝑙 𝑤, 𝑥& , 𝑦&

= 𝜆=
;

𝑤(;) +=
&+"

,

𝑙 𝑤, 𝑥& , 𝑦&

• Gradient: ∇<𝐿 𝑤 = 𝜆 sgn(𝑤) + ∑&+", ∇𝑙(𝑤, 𝑥& , 𝑦&)
(here sgn is an elementwise function)

• SGD update:

𝑤 ← 𝑤 −
𝜂𝜆
𝑛
sgn 𝑤 − 𝜂∇𝑙 𝑤, 𝑥& , 𝑦&

• Interpretation: encouraging sparsity

Linear classifiers: Outline
• Examples of classification models: nearest neighbor, linear
• Empirical loss minimization framework
• Linear classification models

1. Linear regression
2. Logistic regression
3. Perceptron training algorithm
4. Support vector machines

• General recipe: data loss, regularization
• Multi-class classification with a Softmax Function

One-vs-all Classification with a Softmax
• Let 𝑦 ∈ {1,… , 𝐶}
• Learn 𝐶 scoring functions 𝑓", 𝑓$, … , 𝑓@

• We can squash the vector of responses 𝑓", … , 𝑓A into a
vector of “probabilities”:

softmax 𝑓", … , 𝑓A =
exp(𝑓")
∑B exp(𝑓B)

, … ,
exp(𝑓@)
∑B exp(𝑓B)

• The outputs are between 0 and 1 and sum to 1
• If one of the inputs (logits) is much larger than the others,

then the corresponding softmax value will be close to 1 and
others will be close to 0

Softmax and sigmoid
• For two classes:

softmax 0, 𝑓 =
exp(0)

exp(0) + exp(𝑓)
,

exp(𝑓)
exp 0 + exp(𝑓)

= "
"3456(C)

, 456(C)
"3 456 C

= 1 − 𝜎 𝑓 , 𝜎(𝑓)

• Thus, softmax is the generalization of sigmoid for more than
two classes

Cross-entropy loss
• It is natural to use negative log likelihood loss with softmax:

𝑙 𝑊, 𝑥& , 𝑦& = − log𝑃D 𝑦& 𝑥& = −log
exp 𝑤)#

. 𝑥&
∑B exp 𝑤B.𝑥&

• This is also the cross-entropy between the “empirical” distribution
<𝑃 𝑐 𝑥& = 𝕀[𝑐 = 𝑦&] and “estimated” distribution 𝑃D(𝑐|𝑥&):

−=
A
<𝑃 𝑐 𝑥& log 𝑃D(𝑐|𝑥&)

Empirical distribution >𝑃 𝑐 𝑥' Estimated distribution 𝑃)(𝑐|𝑥')

𝑃(correct class | 𝑥') = 1

𝑃(incorrect class | 𝑥') = 0

SGD with cross-entropy loss

𝑙 𝑊, 𝑥& , 𝑦& = − log𝑃D 𝑦& 𝑥& = −log
exp 𝑤)#

. 𝑥&
∑B exp 𝑤B.𝑥&

= −𝑤)#
. 𝑥& + log =

B
exp 𝑤B.𝑥&

• Gradient w.r.t. 𝑤)#:

−𝑥& +
exp 𝑤)#

. 𝑥& 𝑥&
∑B exp 𝑤B.𝑥&

= (𝑃D 𝑦& 𝑥& − 1)𝑥&

• Gradient w.r.t. 𝑤A, 𝑐 ≠ 𝑦&:
exp 𝑤A.𝑥& 𝑥&
∑B exp 𝑤B.𝑥&

= 𝑃D 𝑐 𝑥& 𝑥&

SGD with cross-entropy loss
• Gradient w.r.t. 𝑤)#: (𝑃D 𝑦& 𝑥& − 1)𝑥&

• Gradient w.r.t. 𝑤A, 𝑐 ≠ 𝑦&: 𝑃D 𝑐 𝑥& 𝑥&

• Update rule:
• For 𝑦&:

𝑤)# ← 𝑤)# + 𝜂 1 − 𝑃D 𝑦& 𝑥& 𝑥&
• For 𝑐 ≠ 𝑦&:

𝑤A ← 𝑤A − 𝜂𝑃D 𝑐 𝑥& 𝑥&

Softmax trick: Avoiding overflow
• Exponentiated values exp 𝑓A can become very large and

cause overflow
• Note that adding the same constant to all softmax inputs

(logits) does not change the output of the softmax:

exp 𝑓A + 𝐾
∑B exp 𝑓B + 𝐾

=
exp 𝐾 exp 𝑓A

∑B exp(𝐾) exp 𝑓B
=

exp 𝑓A
∑B exp 𝑓B

• Then we can let K = −maxB 𝑓B (i.e., make largest input to
softmax be 0)

Softmax trick: Temperature scaling
• Suppose we divide every input to the softmax by the same

constant 𝑇:

softmax 𝑓", … , 𝑓A; 𝑇 =
exp(𝑓"/𝑇)
∑B exp(𝑓B/𝑇)

, … ,
exp(𝑓@/𝑇)
∑B exp(𝑓B/𝑇)

• What does this accomplish?
• Prior to normalization, each entry exp(𝑓&) is raised to the power 1/𝑇
• If 𝑇 is close to 0, the largest entry will dominate and output

distribution will tend to one-hot
• If 𝑇 is high, output distribution will tend to uniform

Softmax trick: Temperature scaling
Low temperature:
More concentrated

distribution

Higher temperature:
More uniform
distribution

Figure source

https://www.researchgate.net/figure/An-example-of-categorical-probability-distributions-of-high-temperature-softmax-output_fig1_325016605

Linear classifiers: Outline
• Examples of classification models: nearest neighbor, linear
• Empirical loss minimization framework
• Linear classification models

1. Linear regression
2. Logistic regression
3. Perceptron training algorithm
4. Support vector machines

• General recipe: data loss, regularization
• Multi-class classification with a Softmax Function

• Multi-class SVMs and Perceptron (Self-study)

Multi-class perceptrons
• Let 𝑦 ∈ {1,… , 𝐶}
• Learn 𝐶 scoring functions 𝑓", 𝑓$, … , 𝑓@
• Classify 𝑥 to class 3𝑦 = argmaxA 𝑓A(𝑥)
• Multi-class perceptrons: 𝑓A 𝑥 = 𝑤A.𝑥
• Let 𝑊 be the matrix with rows 𝑤A
• What loss should we use for multi-class classification?

Figure source: Stanford 231n

http://cs231n.github.io/linear-classify/

Multi-class perceptrons
• Let 𝑦 ∈ {1,… , 𝐶}
• Learn 𝐶 scoring functions 𝑓", 𝑓$, … , 𝑓@
• Classify 𝑥 to class 3𝑦 = argmaxA 𝑓A(𝑥)
• Multi-class perceptrons: 𝑓A 𝑥 = 𝑤A.𝑥
• Let 𝑊 be the matrix with rows 𝑤A
• What loss should we use for multi-class classification?
• For (𝑥& , 𝑦&), let the loss be the sum of hinge losses associated

with predictions for all incorrect classes:

𝑙 𝑊, 𝑥& , 𝑦& = =
AE)#

max[0, 𝑤A.𝑥& −𝑤)#
. 𝑥&]

Figure source: Stanford 231n

Score for correct class (𝑦')
has to be greater than the

score for the incorrect class (𝑐)

http://cs231n.github.io/linear-classify/

Multi-class perceptrons

𝑙 𝑊, 𝑥& , 𝑦& = =
AE)#

max[0, 𝑤A.𝑥& −𝑤)#
. 𝑥&]

• Gradient w.r.t. 𝑤)#:

− =
AE)#

𝕀 [𝑤A.𝑥& > 𝑤)#
. 𝑥&]𝑥&

Recall: ;
;<
max 0, 𝑎 = 𝕀[𝑎 > 0]

Multi-class perceptrons

𝑙 𝑊, 𝑥& , 𝑦& = =
AE)#

max[0, 𝑤A.𝑥& −𝑤)#
. 𝑥&]

• Gradient w.r.t. 𝑤)#:

− =
AE)#

𝕀 [𝑤A.𝑥& > 𝑤)#
. 𝑥&]𝑥&

• Gradient w.r.t. 𝑤A, 𝑐 ≠ 𝑦&:

𝕀[𝑤A.𝑥& > 𝑤)#
. 𝑥&]𝑥&

• Update rule: for each 𝑐 s.t. 𝑤A.𝑥& > 𝑤)#
. 𝑥&:

𝑤)# ← 𝑤)# + 𝜂𝑥&
𝑤A ← 𝑤A − 𝜂𝑥&

Multi-class perceptrons
• Update rule: for each 𝑐 s.t. 𝑤A.𝑥& > 𝑤)#

. 𝑥&:
𝑤)# ← 𝑤)# + 𝜂𝑥&
𝑤A ← 𝑤A − 𝜂𝑥&

• Is this equivalent to training 𝐶 independent one-vs-all
classifiers?

Cat score: 65.1

Dog score: 101.4

Ship score: 24.9

Independent

Do nothing

Decrease

Decrease

Multi-class

Increase

Decrease

Do nothing

Multi-class SVM
• Recall single-class SVM loss:

𝑙 𝑤, 𝑥& , 𝑦& = ?
$,

𝑤 $ +max[0, 1 − 𝑦&𝑤.𝑥&]

• Generalization to multi-class:

𝑙 𝑊, 𝑥& , 𝑦& = ?
$,

𝑊 $ + ∑AE)#max[0, 1 − 𝑤)#
. 𝑥& +𝑤A.𝑥&]

Score for correct class – score for incorrect class

(1,0)

(0,1)

Score for correct class has to be
greater than the score for the incorrect

class by at least a margin of 1

Source: Stanford 231n

http://cs231n.github.io/linear-classify/

Multi-class SVM

𝑙 𝑊, 𝑥& , 𝑦& = ?
$,

𝑊 $ + ∑AE)#max[0, 1 − 𝑤)#
. 𝑥& +𝑤A.𝑥&]

• Gradient w.r.t. 𝑤)#:
𝜆
𝑛
𝑤)# − =

AE)#

𝕀 𝑤)#
. 𝑥& −𝑤A.𝑥& < 1 𝑥&

• Gradient w.r.t. 𝑤A, 𝑐 ≠ 𝑦&:
𝜆
𝑛
𝑤A + 𝕀[𝑤)#

. 𝑥& −𝑤A.𝑥& < 1]𝑥&

• Update rule (almost* equivalent to above):
• For each 𝑐 ≠ 𝑦& s.t. 𝑤)#

. 𝑥& −𝑤A.𝑥& < 1: 𝑤)# ← 𝑤)# + 𝜂𝑥&, 𝑤A ← 𝑤A − 𝜂𝑥&

• For 𝑐 = 1,… , 𝐶: 𝑤A ← 1 − 𝜂 ?
,
𝑤A

SVM loss vs. cross-entropy loss

Source: Stanford 231n

Correct class is the third one
(blue)

http://cs231n.github.io/linear-classify/

Linear classifiers: Outline
• Examples of classification models: nearest neighbor, linear
• Empirical loss minimization framework
• Linear classification models

1. Linear regression
2. Logistic regression
3. Perceptron training algorithm
4. Support vector machines

• General recipe: data loss, regularization
• Multi-class classification with a Softmax Function

• Multi-class SVMs and Perceptron (Self-study)

• Probabilistic Interpretation

Linear regression as maximum likelihood estimation?
• Interpretation of 𝑙$ loss: negative log likelihood assuming
𝑦 is normally distributed with mean 𝑓- 𝑥 = 𝑤.𝑥 + 𝑏

(xi, yi)
y = wTx + b

𝑃 𝑦 𝑥 = Normal(𝑦;𝑤𝑇𝑥 + 𝑏, 𝜎$)

Maximum likelihood estimation
• Given: i.i.d. training data 𝑥& , 𝑦& , 𝑖 = 1,… , 𝑛
• Let 𝑃0 𝑦 𝑥 , 𝜃 ∈ Θ be a family of distributions parameterized

by 𝜃
• Maximum (conditional) likelihood estimate:

𝜃12 = argmax0Q
&
𝑃0(𝑦&|𝑥&)

= argmin0 − ∑& log 𝑃0(𝑦&|𝑥&)

Maximum likelihood estimation
𝜃12 = argmin0 − ∑& log 𝑃0(𝑦&|𝑥&)

• Assume 𝑃0 𝑦 𝑥 = Normal(𝑦; 𝑓0 𝑥 , 𝜎$)

log 𝑃0 𝑦 𝑥 = log
1
2𝜋𝜎$

exp −
𝑦 − 𝑓0 𝑥

$

2𝜎$

= −
1
2𝜎$

𝑦 − 𝑓0 𝑥 $ − log 𝜎 −
1
2
log(2𝜋)

𝜃12 = argmin0=
&

𝑦& − 𝑓0 𝑥&
$

Linear regression as maximum likelihood estimation
• Interpretation of 𝑙$ loss: negative log likelihood assuming 𝑦 is

normally distributed with mean 𝑓- 𝑥 = 𝑤.𝑥 + 𝑏

• Does this make sense for binary classification?

(xi, yi)
y = wTx + b

𝑃 𝑦 𝑥 = Normal(𝑦;𝑤𝑇𝑥 + 𝑏, 𝜎$)

Sigmoid: Interpretation
• Adopting a linear + sigmoid model is equivalent to assuming

linear log odds:

log
𝑃(𝑦 = 1|𝑥)
𝑃(𝑦 = −1|𝑥)

= 𝑤.𝑥 + 𝑏

• This happens when 𝑃 𝑥 𝑦 = 1 and
𝑃 𝑥 𝑦 = −1 are Gaussians with different
means and the same covariance matrices
(𝑤 is related to the difference between
the means)

Linear classifiers: Outline
• Examples of classification models: nearest neighbor, linear
• Empirical loss minimization framework
• Linear classification models

1. Linear regression
2. Logistic regression
3. Perceptron training algorithm
4. Support vector machines

• General recipe: data loss, regularization
• Multi-class classification with a Softmax Function

• Multi-class SVMs and Perceptron (Self-study)

• Probabilistic Interpretation

