Feature engineering, Nonlinear
classifiers,
bias-variance tradeoff

CS 444: Deep Learning for
Computer Vision

Saurabh Gupta

Many slides from Lana Lazebnik

Overview

* Feature Design

 Nonlinear classifiers
« “Shallow” approach: Kernel support vector machines (SVMs)
* “Deep” approach: Multi-layer neural networks

« Controlling classifier complexity
 Hyperparameters
« Bias-variance tradeoff
« Overfitting and underfitting
« Hyperparameter search in practice

Hand-designing Feature Spaces using Domain Knowledge

« Edges / gradients more useful than raw pixel values

 |nvariance to local deformations

Input
image

Spatial pooling
Quantization into coarse bins

—
|
|
=
=

Normalize

—>» gamma &

colour

Compute
gradients

Weighted vote
into spatial &
orientation cells

Contrast normalize
over overlapping
spatial blocks

Collect HOG’s
over detection
window

Linear
SVM

Person /
—> non—person

classification

Hand-designing Feature Spaces using Domain Knowledge

« E.g. Spatial pooling of raw pixels

N, __-_OWi
g | [T [[|m
R [

L | Lt | | | [

g
LI
¥
L
"

.| | | [Tl

Map to orientation bins

Hand-designing Feature Spaces using Domain Knowledge

E.g. Histogram of Oriented Gradients

image gx gy

Hand-designing Feature Spaces using Domain Knowledge

Histogram of Oriented Gradients Histogram of Oriented Gradients

Hand-designing Feature Spaces using Domain Knowledge

Hand-designing Feature Spaces using Domain Knowledge

F N

Actual HOG descriptor use many more tricks:

* Normalization
Histograms in overlapping regions

Histograms over varying spatial scales (pyramid-hog)

Image smoothing before computing gradients

Signed gradients

Hand-designing Feature Spaces using Domain Knowledge

(b) (8)
Figure 6. Our HOG detectors cue mainly on silhouette contours (especially the head, shoulders and feet). The most active blocks are
centred on the image background just outside the contour. (a) The average gradient image over the training examples. (b) Each “pixel”
shows the maximum positive SVM weight in the block centred on the pixel. (c) Likewise for the negative SVM weights. (d) A test image.
(e) It’s computed R-HOG descriptor. (f,g) The R-HOG descriptor weighted by respectively the positive and the negative SVM weights.

Dalal and Triggs. Histograms of Oriented Gradients for Human Detection. CVPR 2005.

https://lear.inrialpes.fr/people/triggs/pubs/Dalal-cvpr05.pdf

Beyond Linear Decision Boundaries

« Feature design approach: design features that work well with linear
classifiers

* Non-linear classifier approach:
« “Shallow” approach: nonlinear feature transformation followed by linear classifier

« “Deep” approach: stack multiple layers of linear predictors (interspersed with
nonlinearities)

M i ndas

Shallow approach

r
S
o
o
i [] ®

o |®
° ® ®

o ° H >

o o
o
. ® o
o
Image credit: Andrew Moore

Nonlinear SVMs

* General idea: map the original feature space to a higher-
dimensional one where the training data is (hopefully) separable

» Because of the special properties of SVM optimization, this can be done
without explicitly performing the lifting transformation

ot
....
“““
“““
""""
""""
o

Image credit: Andrew Moore

Dual SVM formulation

* Directly solving the SVM objective for w is called the primal approach:

: /1 2 T
arg mmwzllwll +2max[0,1 —y;w' x;]

* An equivalent formulation is: solve a dual optimization problem over
Lagrange multipliers «; associated with individual training points:
argmaxy Y; a; — %Zi,j iy yixixjt Yy = 0,0 < a; < %
* At the optimum, «; are nonzero only for support vectors

* |n the dual optimization algorithm, training points appear only inside dot
products x;-rx]- and this enables nonlinear SVMs via the kernel trick

 This gives a classifier of the form:
f(X)— aiyiXi XOFW Zl 1 & YiXi

Dual SVM formulation

N

arg maxg); &; — _Zl] ;0 y;yiXi Xj 2 2y = 0,0 < @ <

K(x;,x;) = x{ x;.

N

1
arg maxy 2; &; — Ezi,j a;e;y; Vi K x5) 2 a0y = 0,0 <o <

This gives a classifier of the form:
n

f(x) = Z a;y; K(x; x)
=1
How about we compute similarity in a different space ¢?
K(x;,x1) = (x)"o(x;).

Kernel SVMs

* The kernel trick: instead of explicitly computing the lifting
transformation ¢ (x), define a kernel function

K(x,x") = @) o)

« To be valid, the kernel function must satisfy Mercer’s condition (kernel
matrices must be positive-definite and symmetric)

* The learned classifier takes the form

n

f(x) = 2 a;yip(x;) o(x)

1=1

« This gives a nonlinear decision boundary in the original feature space

Toy example

 Non-separable data in 1D:

4 & *—0— o*-0—@ *—o o—>

0 X

« Apply mapping ¢ (x) = (x,x?):

A X2 ¢
o o _
0 X

o) T(x") =K@, x") = xx' + xx'?

Kernel example 1: Polynomial

Polynomial kernel with degree d and constant c:
K(x,x") = (xTx" +)4
What this looks like for d = 2:
x = (u,v), x' = (u’,v’)
K(xe,x") = (uu' +vv' + ¢)?
= u?u'? + v?v'"? + 2uu'vv' + cuu’ + cvv’ + ¢?

@(x) = (u?,v?,V2uv,cu,/cv, c)

Thus, the explicit feature transformation consists of all
polynomial combinations of individual dimensions of degree

up to d

Kernel example 1: Polynomial

A5 =t -up 0 05 1 15

4" order polynomial

2

ds = o5 o0 05 1 15 2

8" order polynomial

Kernel example 2: Gaussian

 (Gaussian kernel with bandwidth o:
1 !/
K x) = exp (== e = 1)

* Fun fact: the corresponding mapping ¢ (x) is infinite-dimensional!

K(x,x")

[[x = x|

Kernel example 2: Gaussian

 (Gaussian kernel with bandwidth o:
1 !/
K x) = exp (== e = 1)

« It's also called the Radial Basis Function (RBF) kernel
« The predictor f(x) =)i, a;v;K(x;, x) is a sum of “bumps’
centered on support vectors

J

SV’s

SVM: Pros and cons

e Pros

« Margin maximization and kernel trick are elegant, amenable to
convex optimization and theoretical analysis

« Kernel SVMs are flexible, can be used with problem-specific kernels
« SVM loss gives very good accuracy in practice

« Perfect “off-the-shelf’ classifier, many packages are available

« Linear SVMs can scale to large datasets

e (Con

« Kernel SVM training does not scale to large datasets: memory cost is
guadratic and computation cost even worse

Overview

* Feature Design
* Nonlinear classifiers

e “Shallow” arnroach- Karnal Qupporf vartnr marhinacg (SVMs)

« "Deep” approach: Multi-layer neural networks

From linear classifiers to multi-layer networks

y =wlx

From linear classifiers to multi-layer networks

Linear layer

From linear classifiers to multi-layer networks

Linear layer

SOSPEE = Wx
X (4’#
x "Q 74 Y

W: matrix whose rows are weights of output
units w(

From linear classifiers to multi-layer networks

Linear layer Nonlinearity

Common nonlinearities (or activation functions)

Sigmoid |
o(z) = 1+i—w J[—

tanh W
t?m?lh(:c) J[_

RelLU
max (0, x)

Source: Stanford 231n

http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture06.pdf

From linear classifiers to multi-layer networks

Linear layer Nonlinearity

Why do we need the nonlinearity?

y=Wx z = max(0, y)

The power of nonlinearities

Points not linearly

separable in original space
5 (2)

(1) ®
X @)

Source: J. Johnson

https://web.eecs.umich.edu/~justincj/slides/eecs498/FA2020/598_FA2020_lecture05.pdf

The power of nonlinearities

Points not linearly Consider a linear transform: h = Wx + b
separable in ?Zgiginal space Where x, h, b are 2-dimensional
X
o Qo
o © o .O o OO Feature transform:
© o | @ O h = Wx+b
O O
() @ ())
D ®-eoge
X
) 9@

Source: J. Johnson

https://web.eecs.umich.edu/~justincj/slides/eecs498/FA2020/598_FA2020_lecture05.pdf

The power of nonlinearities

Points not linearly Consider a linear transform: h = Wx + b
separable in original space Where x, h, b are 2-dimensional
()
X h@
O O
Feature transform: o ¢ o o
h=Wx+b o O
—
o ® o|l® © o
x (D h(lz e ©O| e O
O
@ ® O o O
Still not linearly g
separable! @ ® ©

Source: J. Johnson

https://web.eecs.umich.edu/~justincj/slides/eecs498/FA2020/598_FA2020_lecture05.pdf

The power of nonlinearities

Let's add a nonlinearity:

h = ReLUWx + b) = max(0,Wx + b)

@ e

Feature transform:

h = ReLU(Wx + b)
—

x / i h(D

-10 v 10

Source: J. Johnson

https://web.eecs.umich.edu/~justincj/slides/eecs498/FA2020/598_FA2020_lecture05.pdf

The power of nonlinearities

Let's add a nonlinearity:

h = ReLUWx + b) = max(0,Wx + b)

@ e

A Feature transform: A

h = ReLU(Wx + b)
—

x / i h(D

-10 v 10

Source: J. Johnson

https://web.eecs.umich.edu/~justincj/slides/eecs498/FA2020/598_FA2020_lecture05.pdf

The power of nonlinearities

Let's add a nonlinearity:

h = ReLUWx + b) = max(0,Wx + b)

@ e

h = ReLU(Wx + b) Bis
— “Collapsed”

onto +h(axis

x / i h(D

-10 v 10

A /
Feature transform: -
B B-| A

Source: J. Johnson

https://web.eecs.umich.edu/~justincj/slides/eecs498/FA2020/598_FA2020_lecture05.pdf

The power of nonlinearities

Let's add a nonlinearity:

h = ReLUWx + b) = max(0,Wx + b)

@ e

A g
B Feature transform: B -
h = ReLUWx +b)Bis — A
D — “Collapsed”

onto +h(axis

X / ’ hD \ /7 /

BT ° o D “collapsed”
onto +hM axis

Source: J. Johnson

https://web.eecs.umich.edu/~justincj/slides/eecs498/FA2020/598_FA2020_lecture05.pdf

The power of nonlinearities

Let's add a nonlinearity:

h = ReLUWx + b) = max(0,Wx + b)
h(2)

/
] Pl
Feature transform: | B ~
h = ReLU(Wx + b) B is ~ A

— “Collapsed”

onto +h(? axis
Ae C// “\ 7/

D

@

C
-10 v 10 “CO”apsed” D uCO”apsedu
onto origin onto +h(D) axis

Source: J. Johnson

https://web.eecs.umich.edu/~justincj/slides/eecs498/FA2020/598_FA2020_lecture05.pdf

The power of nonlinearities

Points not linearly Let's add a nonlinearity:
separable in (()Zr)iginal space h = ReLUWx + b) = max(0,Wx + b)
X h(2)

0] @)
o © Feature transform: , ¢

© h = ReLU(Wx +b) 4 ©
— ® 0. ® o
)

(1) 10
¥ e @ ®@g ©
@
@
-10 v 10 . . O O
® @ @ ©

Source: J. Johnson

https://web.eecs.umich.edu/~justincj/slides/eecs498/FA2020/598_FA2020_lecture05.pdf

The power of nonlinearities

Points not linearly Let's add a nonlinearity:
separable in (()Zr)iginal space h = ReLUWx + b) = max(0,Wx + b)
X h(2)

o © Feature transform:
© h = ReLU(Wx + b)

10

x LD

-10 v 10

Source: J. Johnson

https://web.eecs.umich.edu/~justincj/slides/eecs498/FA2020/598_FA2020_lecture05.pdf

The power of nonlinearities

Points not linearly Let's add a nonlinearity:
separable in (()Zr)iginal space h = ReLUWx + b) = max(0,Wx + b)
X h(2)

o © Feature transform:
© h = ReLU(Wx + b)

10

@D

R

Points are linearly
separable in
feature space!

-10 v 10

Source: J. Johnson

https://web.eecs.umich.edu/~justincj/slides/eecs498/FA2020/598_FA2020_lecture05.pdf

The power of nonlinearities

Points not linearly Let's add a nonlinearity:

separable in original space h = ReLU(Wx + b)
x (@

O Feature transform:

© h = ReLU(Wx + b)
—

10

x (L) R

Linear classifier in feature
space gives nonlinear
classifier in original space

-10 v 10

Source: J. Johnson

max(0, Wx + b)
h(2)

Points are linearly
separable in
feature space!

https://web.eecs.umich.edu/~justincj/slides/eecs498/FA2020/598_FA2020_lecture05.pdf

Two-layer neural network

Input Layer Hidden Layer Output Layer

Individual dimensions of x

Output of hidden layer: g(Wx) Final output: g(W,g(Wx))

Image source

https://ljvmiranda921.github.io/notebook/2017/02/17/artificial-neural-networks/

Two-layer networks as combinations of templates

Linear classifier: One template per class
plane car berd cat deer
- ' i - -mk

Two-layer networks as combinations of templates

First layer: bank of templates
Second layer: recombines templates

Source: J. Johnson

https://web.eecs.umich.edu/~justincj/slides/eecs498/FA2020/598_FA2020_lecture05.pdf

Two-layer networks as combinations of templates

First layer: bank of templates
Second layer: recombines templates

1 Can use different
templates to cover
" multiple modes of a
§ class

Source: J. Johnson

https://web.eecs.umich.edu/~justincj/slides/eecs498/FA2020/598_FA2020_lecture05.pdf

Two-layer networks as combinations of templates

First layer: bank of templates
Second layer: recombines templates

It's a “distributed”
representation:
Most templates are
not interpretable

Source: J. Johnson

https://web.eecs.umich.edu/~justincj/slides/eecs498/FA2020/598_FA2020_lecture05.pdf

Expressiveness of two-layer networks

 How complex can we make the decision boundary in a two-
layer network?

* The bigger the hidden layer, the more complex the model

* A two-layer network is a universal function approximator
- But the hidden layer may need to be huge

3 hidden neurons 6 hidden neurons | 20 hidden neurons

Figure source

http://neuralnetworksanddeeplearning.com/chap4.html
http://cs231n.github.io/neural-networks-1/

Comparing two-layer networks to nonlinear SVMs

Comparing two-layer networks to nonlinear SVMs

« Example: predictor for polynomial kernel of degree 2

u

y = sgn(w’ ¢(x))

Input: Fixed transformation Linear
x = (u,v) b (x) predictor

Comparing two-layer networks to nonlinear SVMs

« Dual view: compute kernel function value of input with every
support vector, apply linear classifier

: K(xlr X)

.
PR
£

L

s ;«.;"7\, K(Xz,X)

Yy =sgn (Z aiYiK(xi»x)>

i=1

Individual dimensions of x

Neural networks beyond two layers

‘

Output:

g (W ... g2(W, g1(W1x)) ...)

Individual dimensions of x

Input Hidden Output
layer layers layer

OFy, .‘V

Image source

https://learnai1.home.blog/2019/11/20/multi-layer-neural-networks-back-propagation/

“Deep” pipeline

» Learn a feature hierarchy

« Each layer extracts features from the output
of previous layer

* All layers are trained jointly

Multi-Layer network demo

INPUT

Which properties do
you want to feed in?

—-_-—-—"—

+ — 1 HIDDEN LAYER

+ -

4 neurons

i o ——— —
—
-—

2 neuron

http://playground.tensorflow.orqg/

OUTPUT

Test loss 0.020

Training loss 0.013

L
O A
O
2,
QLo
R AS00
7 AN
O <2
ooy e
A ()
L) 9
.
0
L

Colors shows
data, neuron and
weight values.

[] Show test data

[] Discretize output

http://playground.tensorflow.org/

Overview

* Feature Design

 Nonlinear classifiers
« "Shallow” approach: Kernel support vector machines (SVMs)
* "Deep” approach: Multi-layer neural networks

« Controlling classifier complexity
 Hyperparameters
« Bias-variance tradeoff
« Overfitting and underfitting
 Hyperparameter search in practice

Supervised learning outline revisited

1. Collect data and labels
2. Specify model: selec{model class and loss functio

3. Train model: find the paramete model that minimize
the empirical loss on the training

This involves
hyperparameters that
affect the generalization
ability of the trained model

Hyperparameters

* K In K-nearest-neighbor

« Whatif K is too large?
« Whatif K is too small?

Hyperparameters

* Regularization constant 4
« Recall: SVM optimization

2 C
min,, 5 lw||? + Z max[0,1 — y;w!x;]
=1

l

« Whatif 1 is too large?
« Whatif 1 is too small?

Hyperparameters

* Regularization constant 4
Tradeoff between margin and classification errors

® * A A
O ® 0 \\\\\\ A A A
.. O ® \\\\\\\ A AA A A
. .‘ . \\\\\\ . A A A A
R
@ oA A A
\\\\ A

N\ . Source

http://www.robots.ox.ac.uk/~az/lectures/ml/lect2.pdf

Hyperparameters

Regularization constant 1

Tradeoff between margin and classification errors

® 0". I'IAA
o %o A A 4
o.o 'I. A AAA ,
o l ‘
o © .| :AAAA
o ® ® A AA

Source

http://www.robots.ox.ac.uk/~az/lectures/ml/lect2.pdf

Hyperparameters

* Regularization constant 4
« Related: preventing the classifier from getting over-confident

Loss = 8.87e-02 Loss = 7.06e-04 Loss = 6.31e-13
Accuracy = 1.0 Accuracy = 1.0 Accuracy = 1.0
0.0..’.‘,“- [== 10 A /,.0.00. 0@ 10 4 \ [SO 00 @
|
/ 0.8 - 0.8 -
" |— py=oix} || | — py=ox) | - — ply=0x)
ply=1|x) ' ply=1[x) ' ply=1|x)
® xwithy=0 04] ® xwithy=0 04 1 ® x with y=0
x with y=1 ' e xwithy=1 ' | e xwithy=1
/ 0.2 1 0.2 1 |
/ |
*r— .oo. @ 00{ —eo—a-ceomo . 001 —e S e ® \
-4 -2 0 2 4 -4 -2 0 2 3 -4 -2 0 2 3
X X

Sigmoid classifier, logistic loss
Source: J. Johnson

https://web.eecs.umich.edu/~justincj/slides/eecs498/WI2022/598_WI2022_lecture04.pdf

Hyperparameters

« What about nonlinear SVMs?
« Choice of kernel (and any associated constants)

Polynomial kernel: K (x,x") = (x"x" + ¢)¢

ds = o5 0 05 1 15 2

4" order polynomial

ds = o5 o0 05 1 15 2

8" order polynomial

Gaussian kernel

 (Gaussian kernel with bandwidth o:
1 !/
K x') = exp (== llx = x'I?)

« Recall: the predictor f(x) =).\, a;v; K(x;, x) is a sum of
“bumps” centered on support vectors

SV’s

+
@0.67

Gaussian kernel

 (Gaussian kernel with bandwidth o
1 !/
Ko x) = exp(—— llx = 1)
« Recall: the predictor f(x) =).\, a;v; K(x;, x) is a sum of

“bumps” centered on support vectors

 How does the value of ¢ affect the behavior of the predictor?

What if o is close to zero?
What if ¢ is very large?

Hyperparameters in multi-layer networks

* Number of layers, number of units per layer

SA
o

\\ . output layer
iInput layer

hidden layer 1 hidden layer 2

Source: Stanford 231n

http://cs231n.github.io/neural-networks-1/

Hyperparameters in multi-layer networks

* Number of layers, number of units per layer

3 hidden neurons 6 hidden neurons 20 hidden neurons
¢ ® | e © ® | e © ® |
® 4 ® © ®]
© 0] ¢
e © e © . e © ®
© [¢] € ® SJ C (5] @ 9]
© 5y @ o @ o)
@ L A 0 L 0 v v ‘
& ® ¢ ® e ® o © e ® ¢ ®
(5] (=] (¢
® @ @) ® [¢]
> ® o ® o e ® o
(] [¢] (&) © D ()
) [] @
D @ O

Number of hidden units in a two-layer network

Source: Stanford 231n

http://cs231n.github.io/neural-networks-1/

Hyperparameters in multi-layer networks

Number of layers, number of units per layer
Type of nonlinearity

Type of loss function

Regularization constant

A =0.001

A =0.01

@

Source: Stanford 231n

http://cs231n.github.io/neural-networks-1/

Hyperparameters in multi-layer networks

Number of layers, number of units per layer
Type of nonlinearity

Type of loss function

Regularization constant

SGD settings: learning rate schedule, number of epochs,
minibatch size, etc.

Summary: Hyperparameters

« Examples of hyperparameters
« Kin K-NN
* In SVMs: regularization constant, kernel type and constants

* In neural networks: number of layers, number of units per layer, type
of nonlinearity, type of loss function, regularization constant

« SGD settings: learning rate schedule, number of epochs, minibatch
size, etc.

« We can think of our hyperparameter choices as determining
the “complexity” of the model and controlling its
generalization ability

Overview

* Nonlinear classifiers
« Kernel support vector machines (SVMs)
* Multi-layer neural networks

* Controlling classifier complexity
 Hyperparameters
« Bias-variance tradeoff
« Overfitting and underfitting
 Hyperparameter search in practice

Model complexity and generalization

» Generalization (test) error of learning algorithms can be
broken down into three components (see notes):
* Noise: unavoidable error
« Bias: error due to simplifying model assumptions
« Variance: error due to randomness of training set

“Simple” model “Intermediate” model “Complex” model

High bias, low variance Low bias, high variance

Figure source

https://www.inf.ed.ac.uk/teaching/courses/mlsc/Notes/Lecture4/BiasVariance.pdf
http://www.holehouse.org/mlclass/07_Regularization.html

Bias-variance tradeoff

« What if your model bias is too high?

* Your model is underfitting — it is incapable of capturing the important
characteristics of the training data

« What if your model variance is too high?

* Your model is overfitting — it is fitting noise and unimportant
characteristics of the data

* How to recognize underfitting or overfitting?
Underfitting Overfitting

Figure source

http://www.holehouse.org/mlclass/07_Regularization.html

Bias-variance tradeoff

« What if your model bias is too high?

* Your model is underfitting — it is incapable of capturing the important
characteristics of the training data

« What if your model variance is too high?
* Your model is overfitting — it is fitting noise and unimportant
characteristics of the data
* How to recognize underfitting or overfitting?
* Need to look at both training and test error
« Underfitting: training and test error are both high
« Overfitting: training error is low, test error is high

Behavior of training and test error

Error

High Bias CompleXIty Low Bias

Low Variance High Variance

Source: D. Hoiem

https://courses.engr.illinois.edu/cs543/sp2017/lectures/Lecture%2021%20-%20Image%20Categorization%20-%20%20Vision_Spring2017.pptx

Dependence on training set size

| -
o
-
L
e
o
—
High Bias i Low Bias
Low Variance CompleXIty High Variance

Source: D. Hoiem

https://courses.engr.illinois.edu/cs543/sp2017/lectures/Lecture%2021%20-%20Image%20Categorization%20-%20%20Vision_Spring2017.pptx

Dependence on training set size

Error

Generalization gap

\4

Number of training examples

(fixed model)
Source: D. Hoiem

https://courses.engr.illinois.edu/cs543/sp2017/lectures/Lecture%2021%20-%20Image%20Categorization%20-%20%20Vision_Spring2017.pptx

Dependence on training set size

« Digit classification case study

Performance on MNIST Dataset
35' T T H R N T T N N T N T T T
A : oo : 1 11| e Gradient, Int

S S —©— Gradient, Linear
30 Coni | === Raw, Poly i

5L\ \ _

201

Error Rate

-
(&)}

10F

107 10° 10* 10
Number of Training Examples

Maji and Malik. 2009 Fast and Accurate Diqgit Classification

https://www2.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-159.pdf

Looking at training and test error

* |In most practical situations, you are faced with a fixed dataset
and have to find the hyperparameter settings that give you the
best generalization performance

Test error

Error

Training error

——
High Bias CompleXIty Low Bias

Low Variance High Variance

Source: D. Hoiem

https://courses.engr.illinois.edu/cs543/sp2017/lectures/Lecture%2021%20-%20Image%20Categorization%20-%20%20Vision_Spring2017.pptx

Hyperparameter search in practice

For a range of hyperparameter choices,
iterate:

Learn parameters on the training data

Measure accuracy on the held-out or
validation data

Finally, measure accuracy on the test data

Crucial: do not peek at test set during
hyperparameter search!

The test set needs to be used sparingly since it
IS supposed to represent never before seen data

Training
Data

Held-Out
Data

Test
Data

Hyperparameter search in practice

Variant: K-fold cross-validation

Partition the entire training set into K groups

In each run (or fold), select one of the groups as the validation set
and train on the other K-1 groups. At the end, average the

accuracies across the K folds

Typically not used for deep learning due to computational expense

Training

\

Validation

fold 1

fold 2

fold 3

fold 4

fold 5

test

Source: J. Johnson

https://web.eecs.umich.edu/~justincj/slides/eecs498/WI2022/598_WI2022_lecture02.pdf

What's the big deal?

« If you don’t maintain proper training-validation-test hygiene,
you will be fooling yourself or others (professors, reviewers,
employers, customers)

* |t may even cause a public scandal!

What's the big deal?

Baidu admits cheating in international
supercomputer competition

Baidu recently apologised for violating the rules of an international supercomputer test in
May, when the Chinese search engine giant claimed to beat both Google and Microsoft on

the ImageNet image-recognition test.

' By Cyrus Lee | June 10, 2015 -- 00:15 GMT (17:15 PDT) | Topic: China

TECHNOLOGY al)t N(‘\ll ‘ll!ﬂl'k @il\ll‘ﬁ

Computer Scientists Are Astir After Baidu Team Is Barred From A.L
Competition

By JOHN MARKOFF JUNE 3, 2015 N
engadgel

Baidu caught gaming recent
supercomputer performance test

,&Ath

IMJAGENET Large Scale Visual Recognition Challenge (ILSVRC)

Date: June 2, 2015
Dear ILSVRC community,
This is a follow up to the announcement on May 19, 2015 with some more details and the status of the test server.

During the period of November 28th, 2014 to May 13th, 2015, there were at least 30 accounts used by a team from Baidu to submit to the
test server at least 200 times, far exceeding the specified limit of two submissions per week. This includes short periods of very high usage,
for example with more than 40 submissions over 5 days from March 15th, 2015 to March 19th, 2015. Figure A below shows submissions
from ImageNet accounts known to be associated with the team in question. Figure B shows a comparison to the activity from all other

accounts.

Some entries from authors of arXiv 1501.02876 Cumulative submissions,
~ (from Dec 2014 to May 2015) excluding official challenges
oo7!*] 250
“ . = Entries from authors of arXiv 1501.02876
o Entrios from all other accounts
0.065 -‘. te . “ ®e 200
*% . .
e 1 -

oosf 'L 8 st en g

5 e R 150/
: : :
¥ 0,055 Rl 2
8 : * s

- s “ : % 100!
005 o ‘ I E
b . :.1 =

0,045/ { *

004 . 0 : >
1272014 0272015 0372015 0412015 052013 112013 052014 112014 052015
Figure A Figure B

The results obtained during this period are reported in a recent arXiv paper. Because of the violation of the regulations of the test server,
these results may not be directly comparable to results obtained and reported by other teams. To make this clear, by exploiting the ability
to test many slightly different solutions on the test server it is possible to 1) select the best out of a set of very similar solutions based on
test performance and achieve a small but potentially significant advantage and 2) choose methods for further research and development
based directly on the test data instead of using only the training and validation data for such choices.

http://www.image-net.org/challenges/L SVRC/announcement-June-2-2015

http://www.image-net.org/challenges/LSVRC/announcement-June-2-2015

