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Outline
• AlexNet (2012-2013)
• ImageNet Results
• Pre-trained CNNs as excellent feature extractors



ImageNet Challenge

ILSVRC
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AlexNet: ILSVRC 2012 winner

• Successor of LeNet-5, but with a few crucial changes

A. Krizhevsky, I. Sutskever, and G. Hinton, ImageNet Classification with Deep Convolutional Neural Networks, NIPS 2012

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner,
Gradient-based learning applied to document recognition, 

Proc. IEEE 86(11): 2278–2324, 1998

http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf
http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf


AlexNet: ILSVRC 2012 winner

• Successor of LeNet-5, but with a few crucial changes
• Max pooling, ReLU nonlinearity
• Dropout regularization
• More data and bigger model (7 hidden layers, 650K units, 60M params)
• GPU implementation (50x speedup over CPU)

• Trained on two GPUs for a week

A. Krizhevsky, I. Sutskever, and G. Hinton, ImageNet Classification with Deep Convolutional Neural Networks, NIPS 2012

http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf


AlexNet: ILSVRC 2012 winner



AlexNet (modified): Stats

Input size Layer Output size Receptive 
Field

Effective 
Stride

Effective 
Padding

Layer C H / W filters kernel stride pad C H / W
conv1 3 227 64 11 4 2 64 56 11 4 2
pool1 64 56 3 2 0 64 27 19 8 2
conv2 64 27 192 5 1 2 192 27 51 8 18
pool2 192 27 3 2 0 192 13 67 16 34
conv3 192 13 384 3 1 1 384 13 99 16 50
conv4 384 13 256 3 1 1 256 13 131 16 66
conv5 256 13 256 3 1 1 256 13 163 16 66
pool5 256 13 3 2 0 256 6 195 32 66
flatten 256 6 9216 259 32 66

fc6 9216 4096 4096 259 32 66
fc7 4096 4096 4096 259 32 66
fc8 4096 1000 1000 259 32 66



AlexNet (modified): Analysis 
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Most of the memory 
usage is in the early 
convolution layers

Nearly all parameters are 
in the fully-connected 
layers

Most floating-point 
ops occur in the 
convolution layers

Source: J. Johnson

FC6 input size:
6 x 6 x 256 = 9216
Output size: 4096
Params: 9216 x 4096 = 37,749K

https://web.eecs.umich.edu/~justincj/slides/eecs498/FA2020/598_FA2020_lecture08.pdf


ImageNet Challenge 2012-2014

Team Year Place Error (top-5) External data

XRCE 2011 25.8% no

SuperVision – Toronto
(7 layers)

2012 - 16.4% no

SuperVision 2012 1st 15.3% ImageNet 22k

http://karpathy.github.io/2014/09/02/what-i-learned-from-competing-against-a-convnet-on-imagenet/

http://karpathy.github.io/2014/09/02/what-i-learned-from-competing-against-a-convnet-on-imagenet/


Breakthrough + Many different models
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Layer 1: Top-9 Patches

Layer 1 filters



Layer 2: Top-9 Patches

• Patches from validation images that give maximal activation of a given feature map 



Layer 3: Top-9 Patches



Layer 4: Top-9 Patches



Layer 5: Top-9 Patches



Learned Representations are Useful in General

1. Features extracted from CNNs trained on 
ImageNet were effective for many CV tasks.

2. Furthermore, learned network weights serve 
as an excellent starting point for other tasks.

J. Donahue, Y. Jia et al. DeCAF: A Deep Convolutional Activation Feature for Generi
c Visual Recognition. ICML 2014

https://arxiv.org/abs/1310.1531
https://arxiv.org/abs/1310.1531


How to use a trained network for a new task?DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition

DeCAF5 DeCAF6 DeCAF7

LogReg 63.29± 6.6 84.30± 1.6 84.87± 0.6
LogReg with Dropout - 86.08± 0.8 85.68± 0.6
SVM 77.12± 1.1 84.77± 1.2 83.24± 1.2
SVM with Dropout - 86.91± 0.7 85.51± 0.9

Yang et al. (2009) 84.3
Jarrett et al. (2009) 65.5
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LogReg DeCAF6 w/ Dropout
SVM DeCAF6 w/ Dropout
Yang et al. (2009)

Figure 4. Left: average accuracy per class on Caltech-101 with 30 training samples per class across three hidden layers of the network
and two classifiers. Our result from the training protocol/classifier combination with the best validation accuracy – SVM with Layer 6
(+ dropout) features – is shown in bold. Right: average accuracy per class on Caltech-101 at varying training set sizes.

DeCAF5 the layer before DeCAF6. DeCAF5 is the first
set of activations that has been fully propagated through
the convolutional layers of the network. We chose not to
evaluate features from any earlier in the network, as the
earlier convolutional layers are unlikely to contain a richer
semantic representation than the later features which form
higher-level hypotheses from the low to mid-level local in-
formation in the activations of the convolutional layers. Be-
cause we are investigating the use of the network’s hidden
layer activations as features, all of its weights are frozen
to those learned on the Berg et al. (2012) dataset.7 All im-
ages are preprocessed using the procedure described for the
ILSVRC images in Section 3, taking features on the center
224⇥ 224 crop of the 256⇥ 256 resized image.

We present results on multiple datasets to evaluate the
strength of DeCAF for basic object recognition, domain
adaptation, fine-grained recognition, and scene recogni-
tion. These tasks each differ somewhat from that for which
the architecture was trained, together representing much of
the contemporary visual recognition spectrum.

4.1. Object recognition

To analyze the ability of the deep features to transfer to
basic-level object category recognition, we evaluate them
on the Caltech-101 dataset (Fei-Fei et al., 2004). In addi-
tion to directly evaluating linear classifier performance on
DeCAF6 and DeCAF7, we also report results using a reg-
ularization technique called “dropout” proposed by Hinton
et al. (2012). At training time, this technique works by ran-
domly setting half of the activations (here, our features) in a
given layer to 0. At test time, all activations are multiplied
by 0.5. Dropout was used successfully by Krizhevsky et al.
(2012) in layers 6 and 7 of their network; hence we study
the effect of the technique when applied to the features de-
rived from these layers.

7We also experimented with the equivalent feature using ran-
domized weights and found it to have performance comparable to
traditional hand-designed features.

In each evaluation, the classifier, a logistic regression (Lo-
gReg) or support vector machine (SVM), is trained on a
random set of 30 samples per class (including the back-
ground class), and tested on the rest of the data, with pa-
rameters cross-validated for each split on a 25 train/5 vali-
dation subsplit of the training data. The results in Figure 4,
left, are reported in terms of mean accuracy per category
averaged over five data splits.

Our top-performing method (based on validation accuracy)
trains a linear SVM on DeCAF6 with dropout, with test set
accuracy of 86.9%. The DeCAF5 features perform substan-
tially worse than either the DeCAF6 or DeCAF7 features,
and hence we do not evaluate them further in this paper.
The DeCAF7 features generally have accuracy about 1-2%
lower than the DeCAF6 features on this task. The dropout
regularization technique uniformly improved results by 0-
2% for each classifier/feature combination. When trained
on DeCAF, the SVM and logistic regression classifiers per-
form roughly equally well on this task.

We compare our performance against the current state-of-
the-art on this benchmark from Yang et al. (2009), a method
employing a combination of 5 traditional hand-engineered
image features followed by a multi-kernel based classifier.
Our top-performing method training a linear SVM on a sin-
gle feature outperforms this method by 2.6%. Our method
also outperforms by over 20% the two-layer convolutional
network of Jarrett et al. (2009), demonstrating the impor-
tance of the depth of the network used for our feature.
Note that unlike our method, these approaches from the
literature do not implicitly leverage an outside large-scale
image database like ImageNet. The performance edge of
our method over these approaches demonstrates the impor-
tance of multi-task learning when performing object recog-
nition with sparse data like that available in the Caltech-101
benchmark.

We also show how performance of the two DeCAF6 with
dropout methods above vary with the number of train-
ing cases per category, plotted in Figure 4, right, trained

DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition

Amazon! Webcam Dslr! Webcam

SURF DeCAF6 DeCAF7 SURF DeCAF6 DeCAF7

Logistic Reg. (S) 9.63± 1.4 48.58± 1.3 53.56± 1.5 24.22± 1.8 88.77± 1.2 87.38± 2.2
SVM (S) 11.05± 2.3 52.22± 1.7 53.90± 2.2 38.80± 0.7 91.48± 1.5 89.15± 1.7

Logistic Reg. (T) 24.33± 2.1 72.56± 2.1 74.19± 2.8 24.33± 2.1 72.56± 2.1 74.19± 2.8
SVM (T) 51.05± 2.0 78.26± 2.6 78.72± 2.3 51.05± 2.0 78.26± 2.6 78.72± 2.3

Logistic Reg. (ST) 19.89± 1.7 75.30± 2.0 76.32± 2.0 36.55± 2.2 92.88± 0.6 91.91± 2.0
SVM (ST) 23.19± 3.5 80.66± 2.3 79.12± 2.1 46.32± 1.1 94.79± 1.2 92.96± 2.0

Daume III (2007) 40.26± 1.1 82.14± 1.9 81.65± 2.4 55.07± 3.0 91.25± 1.1 89.52± 2.2
Hoffman et al. (2013) 37.66± 2.2 80.06± 2.7 80.37± 2.0 53.65± 3.3 93.25± 1.5 91.45± 1.5
Gong et al. (2012) 39.80± 2.3 75.21± 1.2 77.55± 1.9 39.12± 1.3 88.40± 1.0 88.66± 1.9

Chopra et al. (2013) 58.85 78.21

Table 1. DeCAF dramatically outperforms the baseline SURF feature available with the Office dataset as well as the deep adaptive
method of Chopra et al. (2013). We report average multi class accuracy using both non-adaptive and adaptive classifiers, changing only
the input feature from SURF to DeCAF. Most surprisingly, in the case of Dslr!Webcam the domain shift is largely non-existent with
DeCAF.

pipeline to get the features for classification. We computed
DeCAF6 and trained a multi-class logistic regression on top
of the features.

Our second approach, we tested DeCAF in a pose-
normalized setting using the deformable part descriptors
(DPD) method (Zhang et al., 2013). Inspired by the de-
formable parts model (Felzenszwalb et al., 2010), DPD ex-
plicitly utilizes the part localization to do semantic pool-
ing. Specifically, after training a weakly-supervised DPM
on bird images, the pool weight for each part of each com-
ponent is calculated by using the key-point annotations to
get cross-component semantic part correspondence. The fi-
nal pose-normalized representation is computed by pooling
the image features of predicted part boxes using the pool-
ing weights. Based on the DPD implementation provided
by the authors, we applied DeCAF in the same pre-trained
DPM model and part predictions and used the same pool-
ing weights. Figure 6 shows the DPM detections and visu-
alization of pooled DPD features on a sample test image.
As our first approach, we resized each predicted part box
to 256 ⇥ 256 and computed DeCAF6 to replace the KDES
image features (Bo et al., 2010) used in DPD paper.

Our performance as well as those from the literature are
listed in Table 2. DeCAF together with a simple logistic re-
gression already obtains a significant performance increase
over existing approaches, indicating that such features, al-
though not specifically designed to model subcategory-
level differences, captures such information well. In addi-
tion, explicitly taking more structured information such as
part locations still helps, and provides another significant
performance increase, obtaining an accuracy of 64.96%,

(a) DPM detections (b) Parts (c) DPD

Figure 6. Pipeline of deformable part descriptor (DPD) on a sam-
ple test images. It uses DPM for part localization and then use
learned pooling weights for final pose-normalized representation.

Method Accuracy

DeCAF6 58.75
DPD + DeCAF6 64.96

DPD (Zhang et al., 2013) 50.98
POOF (Berg & Belhumeur, 2013) 56.78

Table 2. Accuracy on the Caltech-UCSD bird dataset.

compared to the 50.98% accuracy reported in (Zhang et al.,
2013). It also outperforms POOF (Berg & Belhumeur,
2013), which is the best part-based approach for fine-
grained categorization published so far.

To the best of our knowledge, this is the best accuracy re-
ported so far in the literature.

We note again that in all the experiments above, no fine-
tuning is carried out on the CNN layers since our main
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method of Chopra et al. (2013). We report average multi class accuracy using both non-adaptive and adaptive classifiers, changing only
the input feature from SURF to DeCAF. Most surprisingly, in the case of Dslr!Webcam the domain shift is largely non-existent with
DeCAF.

pipeline to get the features for classification. We computed
DeCAF6 and trained a multi-class logistic regression on top
of the features.

Our second approach, we tested DeCAF in a pose-
normalized setting using the deformable part descriptors
(DPD) method (Zhang et al., 2013). Inspired by the de-
formable parts model (Felzenszwalb et al., 2010), DPD ex-
plicitly utilizes the part localization to do semantic pool-
ing. Specifically, after training a weakly-supervised DPM
on bird images, the pool weight for each part of each com-
ponent is calculated by using the key-point annotations to
get cross-component semantic part correspondence. The fi-
nal pose-normalized representation is computed by pooling
the image features of predicted part boxes using the pool-
ing weights. Based on the DPD implementation provided
by the authors, we applied DeCAF in the same pre-trained
DPM model and part predictions and used the same pool-
ing weights. Figure 6 shows the DPM detections and visu-
alization of pooled DPD features on a sample test image.
As our first approach, we resized each predicted part box
to 256 ⇥ 256 and computed DeCAF6 to replace the KDES
image features (Bo et al., 2010) used in DPD paper.

Our performance as well as those from the literature are
listed in Table 2. DeCAF together with a simple logistic re-
gression already obtains a significant performance increase
over existing approaches, indicating that such features, al-
though not specifically designed to model subcategory-
level differences, captures such information well. In addi-
tion, explicitly taking more structured information such as
part locations still helps, and provides another significant
performance increase, obtaining an accuracy of 64.96%,

(a) DPM detections (b) Parts (c) DPD

Figure 6. Pipeline of deformable part descriptor (DPD) on a sam-
ple test images. It uses DPM for part localization and then use
learned pooling weights for final pose-normalized representation.

Method Accuracy

DeCAF6 58.75
DPD + DeCAF6 64.96

DPD (Zhang et al., 2013) 50.98
POOF (Berg & Belhumeur, 2013) 56.78

Table 2. Accuracy on the Caltech-UCSD bird dataset.

compared to the 50.98% accuracy reported in (Zhang et al.,
2013). It also outperforms POOF (Berg & Belhumeur,
2013), which is the best part-based approach for fine-
grained categorization published so far.

To the best of our knowledge, this is the best accuracy re-
ported so far in the literature.

We note again that in all the experiments above, no fine-
tuning is carried out on the CNN layers since our main

DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition

interest is to analyze how DeCAF generalizes to different
tasks. To obtain the best possible result one may want to
perform a full back-propagation. However, the fact that we
see a significant performance increase without fine-tuning
suggests that DeCAF may serve as a good off-the-shelf vi-
sual representation without heavy computation.

4.4. Scene recognition

Finally, we evaluate DeCAF on the SUN-397 large-scale
scene recognition database (Xiao et al., 2010). Unlike ob-
ject recognition, wherein the goal is to identify and classify
an object which is usually the primary focus of the image,
the goal of a scene recognition task is to classify the scene

of the entire image. In the SUN-397 database, there are 397
semantic scene categories including abbey, diner, mosque,
and stadium. Because DeCAF is learned on ILSVRC, an
object recognition database, we are applying it to a task for
which it was not designed. Hence we might expect this
task to be very challenging for these features, unless they
are highly generic representations of the visual world.

Based on the success of using dropout with DeCAF6 and
DeCAF7 for the object recognition task detailed in Sec-
tion 4.1, we train and evaluate linear classifiers on these
dropped-out features on the SUN-397 database. Table 3
gives the classification accuracy results averaged across 5
splits of 50 training images and 50 test images. Parameters
are fixed for all methods, but we select the top-performing
method by cross-validation, training on 42 images and test-
ing on the remaining 8 in each split.

Our top-performing method in terms of cross-validation ac-
curacy was to use DeCAF7 with the SVM classifier, result-
ing in 40.94% test performance. Comparing against the
method of Xiao et al. (2010), the current state-of-the-art
method, we see a performance improvement of 2.9% us-
ing only DeCAF. Note that, like the state-of-the-art method
used as a baseline in Section 4.1, this method uses a large
set of traditional vision features and combines them with a
multi-kernel learning method. The fact that a simple linear
classifier on top of our single image feature outperforms
the multi-kernel learning baseline built on top of many tra-
ditional features demonstrates the ability of DeCAF to gen-
eralize to other tasks and its representational power as com-
pared to traditional hand-engineered features.

5. Discussion
In this work, we analyze the use of deep features applied in
a semi-supervised multi-task framework. In particular, we
demonstrate that by leveraging an auxiliary large labeled
object database to train a deep convolutional architecture,
we can learn features that have sufficient representational
power and generalization ability to perform semantic visual

DeCAF6 DeCAF7

LogReg 40.94± 0.3 40.84± 0.3
SVM 39.36± 0.3 40.66± 0.3

Xiao et al. (2010) 38.0

Table 3. Average accuracy per class on SUN-397 with 50 training
samples and 50 test samples per class, across two hidden layers
of the network and two classifiers. Our result from the training
protocol/classifier combination with the best validation accuracy
– Logistic Regression with DeCAF7 – is shown in bold.

discrimination tasks using simple linear classifiers, reliably
outperforming current state-of-the-art approaches based on
sophisticated multi-kernel learning techniques with tradi-
tional hand-engineered features. Our visual results demon-
strate the generality and semantic knowledge implicit in
these features, showing that the features tend to cluster im-
ages into interesting semantic categories on which the net-
work was never explicitly trained. Our numerical results
consistently and robustly demonstrate that our multi-task
feature learning framework can substantially improve the
performance of a wide variety of existing methods across
a spectrum of visual recognition tasks, including domain
adaptation, fine-grained part-based recognition, and large-
scale scene recognition. The ability of a visual recogni-
tion system to achieve high classification accuracy on tasks
with sparse labeled data has proven to be an elusive goal in
computer vision research, but our multi-task deep learning
framework and fast open-source implementation are signif-
icant steps in this direction. While our current experiments
focus on contemporary recognition challenges, we expect
our feature to be very useful in detection, retrieval, and cat-
egory discovery settings as well.
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Figure 4. Left: average accuracy per class on Caltech-101 with 30 training samples per class across three hidden layers of the network
and two classifiers. Our result from the training protocol/classifier combination with the best validation accuracy – SVM with Layer 6
(+ dropout) features – is shown in bold. Right: average accuracy per class on Caltech-101 at varying training set sizes.

DeCAF5 the layer before DeCAF6. DeCAF5 is the first
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the convolutional layers of the network. We chose not to
evaluate features from any earlier in the network, as the
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semantic representation than the later features which form
higher-level hypotheses from the low to mid-level local in-
formation in the activations of the convolutional layers. Be-
cause we are investigating the use of the network’s hidden
layer activations as features, all of its weights are frozen
to those learned on the Berg et al. (2012) dataset.7 All im-
ages are preprocessed using the procedure described for the
ILSVRC images in Section 3, taking features on the center
224⇥ 224 crop of the 256⇥ 256 resized image.

We present results on multiple datasets to evaluate the
strength of DeCAF for basic object recognition, domain
adaptation, fine-grained recognition, and scene recogni-
tion. These tasks each differ somewhat from that for which
the architecture was trained, together representing much of
the contemporary visual recognition spectrum.

4.1. Object recognition

To analyze the ability of the deep features to transfer to
basic-level object category recognition, we evaluate them
on the Caltech-101 dataset (Fei-Fei et al., 2004). In addi-
tion to directly evaluating linear classifier performance on
DeCAF6 and DeCAF7, we also report results using a reg-
ularization technique called “dropout” proposed by Hinton
et al. (2012). At training time, this technique works by ran-
domly setting half of the activations (here, our features) in a
given layer to 0. At test time, all activations are multiplied
by 0.5. Dropout was used successfully by Krizhevsky et al.
(2012) in layers 6 and 7 of their network; hence we study
the effect of the technique when applied to the features de-
rived from these layers.

7We also experimented with the equivalent feature using ran-
domized weights and found it to have performance comparable to
traditional hand-designed features.

In each evaluation, the classifier, a logistic regression (Lo-
gReg) or support vector machine (SVM), is trained on a
random set of 30 samples per class (including the back-
ground class), and tested on the rest of the data, with pa-
rameters cross-validated for each split on a 25 train/5 vali-
dation subsplit of the training data. The results in Figure 4,
left, are reported in terms of mean accuracy per category
averaged over five data splits.

Our top-performing method (based on validation accuracy)
trains a linear SVM on DeCAF6 with dropout, with test set
accuracy of 86.9%. The DeCAF5 features perform substan-
tially worse than either the DeCAF6 or DeCAF7 features,
and hence we do not evaluate them further in this paper.
The DeCAF7 features generally have accuracy about 1-2%
lower than the DeCAF6 features on this task. The dropout
regularization technique uniformly improved results by 0-
2% for each classifier/feature combination. When trained
on DeCAF, the SVM and logistic regression classifiers per-
form roughly equally well on this task.

We compare our performance against the current state-of-
the-art on this benchmark from Yang et al. (2009), a method
employing a combination of 5 traditional hand-engineered
image features followed by a multi-kernel based classifier.
Our top-performing method training a linear SVM on a sin-
gle feature outperforms this method by 2.6%. Our method
also outperforms by over 20% the two-layer convolutional
network of Jarrett et al. (2009), demonstrating the impor-
tance of the depth of the network used for our feature.
Note that unlike our method, these approaches from the
literature do not implicitly leverage an outside large-scale
image database like ImageNet. The performance edge of
our method over these approaches demonstrates the impor-
tance of multi-task learning when performing object recog-
nition with sparse data like that available in the Caltech-101
benchmark.

We also show how performance of the two DeCAF6 with
dropout methods above vary with the number of train-
ing cases per category, plotted in Figure 4, right, trained

Caltech 101

Domain Adaptation

Fine-grained Classification

Scene Classification

J. Donahue, Y. Jia et al. DeCAF: A Deep Convolutional Activation Feature for Generi
c Visual Recognition. ICML 2014

https://arxiv.org/abs/1310.1531
https://arxiv.org/abs/1310.1531
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How to use a trained network for a new task?
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How to use a trained network for a new task?

• Take the vector of activations from one 
of the fully connected (FC) layers and 
treat it as an off-the-shelf feature
• Train a new classifier layer on top of the FC 

layer
• Fine-tune the whole network

FC 
vector

Classifier 
layer


