Sequence Modeling (RNNs)

Slides from Justin Johnson

So far: “Feedforward” Neural Networks

one to one

\ e.g. Image classification

Image -> Label

Slide from Justin Johnson

Recurrent Neural Networks: Process Sequences

one to one one to many
i Pttt
! !

\ e.g. Image Captioning:
Image -> sequence of words

Slide from Justin Johnson

Recurrent Neural Networks: Process Sequences

one to one one to many many to one
! Pt !
! ! Pt

\ e.g. Video classification:
Sequence of images -> label

Slide from Justin Johnson

Recurrent Neural Networks: Process Sequences

one to one one to many many to one many to many

e.g. Machine Translation: /
Sequence of words -> Sequence of words

Slide from Justin Johnson

Recurrent Neural Networks: Process Sequences

one to one one to many many to one many to many many to many

e.g. Per-frame video classification: /
Sequence of images -> Sequence of labels

Slide from Justin Johnson

Sequential Processing of Non-Sequential Data

Classify images by taking
a series of “glimpses”

Ba, Mnih, and Kavukcuoglu, “Multiple Object Recognition with Visual Attention”, ICLR 2015.
Gregor et al, “DRAW: A Recurrent Neural Network For Image Generation”, ICML 2015

Slide from Justin Johnson

Sequential Processing of Non-Sequential Data

Generate images one piece at a time!

-'3 i
L

|, “DRAW: A Recurrent Neural Network For Image Generation”, ICML 2015

Slide from Justin Johnson

Recurrent Neural Networks

Key idea: RNNs have an
“internal state” that is
updated as a sequence
is processed

Slide from Justin Johnson

Recurrent Neural Networks

We can process a sequence of vectors x by

y applying a recurrence formula at every time step:
hel= fw(he—1,x¢)

new state / old state input vector at

some time step

some function
with parameters W

Slide from Justin Johnson

Recurrent Neural Networks

ny

Slide from Justin Johnson

new state

fw

Notice: the same function and
the same set of parameters
are used at every time step.

i1

/ old state

some function
with parameters W

We can process a sequence of vectors x by
y applying a recurrence formula at every time step:

(

)

Xt

)

Input vector at
some time step

(Vanilla) Recurrent Neural Networks

The state consists of a single “hidden” vector h:
Y he = fw(he—q, X¢)

m> ht = tanh(Whhht_l -+ thxt ~+ bh)

|
YVt = Whyht + by

X

Sometimes called a “Vanilla RNN” or an
“Elman RNN” after Prof. Jeffrey ElIman

Slide from Justin Johnson

RNN Computational Graph

Initial hidden state
Either set to all O,
Or learn it

ho

Slide from Justin Johnson

RNN Computational Graph

Slide from Justin Johnson

RNN Computational Graph

Slide from Justin Johnson

RNN Computational Graph

Slide from Justin Johnson

RNN Computational Graph

Re-use the same weight matrix at every time-step

ho fW > hl fW > hz fW h3 —
X1 X2 X3
W

Slide from Justin Johnson

RNN Computational Graph (Many to Many)

Y1

Y

o £,
W/ -

Slide from Justin Johnson

Y3

Y1

RNN Computational Graph (Many to Many)

Y1

Y

o £,
W/ -

Slide from Justin Johnson

Y3

Y1

RNN Computational Graph (Many to Many)

Y1

Y

o £,
W/ -

Slide from Justin Johnson

/'
Y3 1 L3 YT 1 L
1 hs - hy

RNN Computational Graph (Many to One)

h fw " hy fw " ha fw
X1 X2 X3
W

Slide from Justin Johnson

RNN Computational Graph (One to Many)

Y1

Y

ho F— fiy
/X
W

Slide from Justin Johnson

Y3

Y1

Sequence to Sequence (seg2seq)
(Many to one) + (One to many)

Many to one: Encode input
sequence in a single vector

ho 1 fw hy fw — h, fw —phs —hy |—
' X X X
W, 1 2 3

Sutskever et al, “Sequence to Sequence Learning with Neural Networks”, NIPS 2014

Slide from Justin Johnson

Sequence to Sequence (seg2seq)
One to many: Produce
(Many to One) + (One to many) output sequence from

single input vector
Many to one: Encode input

sequence in a single vector Vi Y
A
ho > fW h, > fW — h, > fW —+hy — = —phy |— fW hy fW — h; fW —
w, || ” ” W,

Sutskever et al, “Sequence to Sequence Learning with Neural Networks”, NIPS 2014

Slide from Justin Johnson

Example: Language Modeling

Given characters 1, 2, ..., t-1,
model predicts character t

Training sequence: “hello”

Vocabulary: [h, e, |, O]

Slide from Justin Johnson

input layer

input chars: «

S leaee =

O |loo-o0

= |lo~0co

= o000

Example: Language Modeling

Given characters 1, 2, ..., t-1,
model predicts character t

hi = tanh(Wprhi—1 + Wapat)

Training sequence: “"hello”

Vocabulary: [h, e, |, O]

Slide from Justin Johnson

hidden layer

input layer

input chars:

0.3
-0.1
0.9

Y

1
0
0
0
“h”

A4

0.1

-0.5
-0.3

= |loa~0oco

W_hh| ~

Example: Language Modeling

Given characters 1, 2, ..., t-1,
model predicts character t

hi = tanh(Wprhi—1 + Wapat)

Training sequence: “"hello”

Vocabulary: [h, e, |, O]

Slide from Justin Johnson

target chars:

output layer

hidden layer

input layer

input chars:

“e!!

1.0
2.2
-3.0
4.1

|

0.3
-0.1
0.9

1
0
0
0
“h”

A4

\
1
O !
(&)

W_hh| -

= |lo~0oco

Example: Language Modeling Given “h”, predict “e”

target chars:] ‘e’

Given characters 1, 2, ..., t-1, = - =
model predicts character t output layer e 22 i
1.2 -1.1 2.2

L
1.0 0.1 -0.3
ht o tanh(Whhht_l - tha:t) hidden layer 0.3 >~ -0.5 WAL 0.9
0.1 0.3 D7

! ! T
«) ” 0 0 0
Training sequence: "hello ——— (1) : :
0 0 0
Vocabl“ary: [h) €, l) O] input chars “@” | i

Slide from Justin Johnson

Example: Language Modeling Given “he”, predict *I"

target chars: ‘€’

Given characters 1, 2, ..., t-1,

0.1 0.2
model predicts character t output layer 22 i
1 2.2
T T W _hy
0.1 -0.3
h; = tanh(Whhht_l - tha:t) hidden layer 05 V=01 0.9
0.3 0.7
T TW_xh
- . /. ” 0 0
Training sequence: "hello ——— : :
0 0
e o

VocabU|ary: [hl €, I/ O] input chars:} “h”

Slide from Justin Johnson

(lIII

Example: Language Modeling Given “hel”, predict

target chars: ‘€’

Given characters 1, 2, ..., t-1,
model predicts character t output layer

ht — tanh(Whhht_l - thwt) hidden layer

Training sequence: “hello”

input layer

VocabU|ary: [hl €, I/ O] input chars:} “h”

Slide from Justin Johnson

target chars: ‘€’

Given characters 1, 2, ..., t-1,
model predicts character t output layer

ht — tanh(Whhht_l - thwt) hidden layer

Training sequence: “"hello”

input layer

VocabU|ary: [hl €, I/ O] input chars:} “h”

Slide from Justin Johnson

Example: Language Modeling

At test-time, generate new
text: sample characters one
at a time, feed back to model

Training sequence: “"hello”

Vocabulary: [h, e, |, O]

Slide from Justin Johnson

Sample

Softmax

output layer

hidden layer

input layer

input chars:

o

e
)

.03
13
.00
.84

?

1.0
22
-3.0
4.1

|

0.3
-0.1
09

1
0
0
0
((h"

Example: Language Modeling

At test-time, generate new
text: sample characters one
at a time, feed back to model

Training sequence: “hello”

Vocabulary: [h, e, |, O]

Slide from Justin Johnson

Sample

Softmax

output layer

hidden layer

input layer

input chars:

l(e/\
!

.03
13
.00
.84

?

1.0
2.2
-3.0
4.1

|

0.3
-0.1

09

1
0
0
0
“h”

OO -0

CD-

Example: Language Modeling

At test-time, generate new
text: sample characters one
at a time, feed back to model

Training sequence: “"hello”

Vocabulary: [h, e, |, O]

Slide from Justin Johnson

Sample

Softmax

output layer

hidden layer

input layer

input chars:

l(e/\
!

.03
13
.00
.84

?

1.0
2.2
-3.0
4.1

|

0.3
-0.1

Ill

09

1
0
0
0
“h”

Example: Language Modeling

Sample

: Softmax
At test-time, generate new

text: sample characters one
at a time, feed back to model

output layer

hidden layer

Training sequence: “"hello”
input layer
Vocabulary: [h, e, |, 0] S

Slide from Justin Johnson

0.3
-0.1

f,/\

f,[\

09

1
0
0
0
“h”

Y

.25 A1
.20 17
.05 .68
.50 .03
i i
0.5 0.1
0.3 0.5
-1.0 1.9
12 -1.1
1.0 0.1
0.3 > -0.5
0.1 0.3
0 0
1 0
0 1
0 0

Example: Language Modeling ’ W [\ ’

embedding layer

e 0
Sample 3 3 $ 3
So far: encode inputs P o p po
' Softmax | o | | ||| (=] |5
as one-hot-vector 84 50 03 75
i i i i
1.0 0.5 0.1 0.2
- o - output layer 23% 2% ?g 8?
(W1g Wiy Wiz Wogf [1] 0 [wyy 4{ 1{ '1{ TW h
(W1 Woy Wo3 Wig) [0] = [wy o
. T rA- - 0.3 1.0 0.1 |wlhn! -0-3
W31 W32 W33 W14 O _W31 hiddgn layer | -0.1 > 0.3 > -0.5 —F— 0.9
O 0.9 0.1 -0.3 0.7
. . . - . W _xh
Matrix multiply with a one-hot vector just I l l I =
extracts a column from the weight matrix. input ayer | 0 i : 0
Often extract this into a separate 0 0 0 0
input chars: “h” “ar as e

Slide from Justin Johnson

Example: Language Modeling

So far: encode inputs
as one-hot-vector

(W11 Wiy W3 Wyl [1] W11

Wy Wy Woz Wyl [0] = [wy,

(W3q W3y W33 Wy, [O) W3,
0

Matrix multiply with a one-hot vector just
extracts a column from the weight matrix.
Often extract this into a separate
embedding layer

Slide from Justin Johnson

target chars:

output layer

hidden layer

input layer

input chars:

ue!!

1.0
22

-3.0

41

|

0.3

-0.1

g9

Y

?

.03
13
.00
.84

J |loocoo - —»

0.5 0.1 0.2
0.3 0.5 1.5
1.0 1.9 -0.1
1.2 i 2.2
N
1.0 0.1 |w hnl 03
0.3 > -05 > 0.9
0.1 0.3 0.7
t t t
.25 11 11
.20 .17 .17
.05 .68 .68
.50 .03 .03
T T fun
0 0 0
1 0 0
0 1 1
0 0 0
‘g’ “r iz

Forward through entire sequence to

Ba Ckp 'O pagatiO N Th rough T| me compute loss, then backward through

entire sequence to compute gradient

\ 4
\4
\4
\4
\4
\4
\ 4
\ 4
\4
\4
\4
\4
\4
\4
\4
\4
\4
\4

Slide from Justin Johnson

Forward through entire sequence to

BaCkprOpagatiOn Th rough T| me compute loss, then backward through

entire sequence to compute gradient

Problem: Takes a lot of

Loss
memory for Ion% \\

\ 4
\4
\4
\4
\4
\4
\ 4
\ 4
\4
\4
\4
\4
\4
\4
\4
\4
\4
\4

Slide from Justin Johnson

Truncated Backpropagation Through Time

Loss

t
//(/ \ \\ Run forward and backward
through chunks of the sequence

instead of whole sequence

<

Slide from Justin Johnson

Truncated Backpropagation Through Time

Loss
// / 1] \ \;\\ Carry hidden states
forward in time forever,
but only backpropagate
for some smaller number
of steps
> >

Slide from Justin Johnson

Truncated Backpropagation Through Time

Loss

TTIN

/[I \

Slide from Justin Johnson

Example: Image Captioning

“straw” “hat” END

START “straw” “hat”

Mao et al, “Explain Images with Multimodal Recurrent Neural Networks”, NeurIPS 2014 Deep Learning and Representation Workshop
Karpathy and Fei-Fei, “Deep Visual-Semantic Alignments for Generating Image Descriptions”, CVPR 2015

Vinyals et al, "Show and Tell: A Neural Image Caption Generator”, CVPR 2015
Donahue et al, “Long-term Recurrent Convolutional Networks for Visual Recognition and Description”, CVPR 2015

Chen and Zitnick, “Learning a Recurrent Visual Representation for Image Caption Generation”, CVPR 2015

Slide from Justin Johnson

Example: Image Captioning

Recurrent
Neural
Network

START “straw” “hat”

Convolutional Neural Network

Slide from Justin Johnson

This image is CCO public domain

| image | *

conv-64
conv-64
maxpool

conv-128

conv-128
maxpool

conv-256

== Transfer learning: Take
maxpool CNN trained on ImageNet,
conv-512 chop off last layer

conv-512
maxpool

conv-512
conv-512
maxpool

FC-4096
FC-4096

FC-10Q0
sof X

Slide from Justin Johnson

https://pixabay.com/en/straw-hat-man-sea-sunlight-sunset-70696/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

This image is CCO public domain

. image ¢

conv-64
conv-64
maxpool

conv-128
conv-128

maxpool

conv-256
conv-256

maxpool

conv-512
conv-512
maxpool

conv-512
conv-512
maxpool

FC-4096
FC-4096

Slide from Justin Johnson

https://pixabay.com/en/straw-hat-man-sea-sunlight-sunset-70696/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

This image is CCO public domain

. image ¢

conv-64
conv-64

maxpool

conv-128

conv-128

= Before:
pool

conv-256 h’t — tanh(Whhht_l + thxt + bh)
conv-256

maxpool

conv-512

conv-512 N ow: “
maxpool tanh(Whhht—l + thxt + Wihv + bh)

conv-512
conv-512
maxpool

FC-4096
FC-4096

Slide from Justin Johnson

https://pixabay.com/en/straw-hat-man-sea-sunlight-sunset-70696/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

This image is CCO public domain

| image | *

conv-64
conv-64

maxpool

Sample
f word and
copy to

input

conv-128

conv-128

—— Before:
conv-256 h’t — tanh(Whhht—l + thxt + bh)

conv-256

maxpool

conv-512

conv-512 N ow: “
maxpool tanh(Whhht—l + thxt + Wihv + bh)

conv-512

conv-512
maxpool

FC-4096
FC-4096

Slide from Justin Johnson

https://pixabay.com/en/straw-hat-man-sea-sunlight-sunset-70696/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

This image is CCO public domain

| image | *

conv-64
conv-64

maxpool

conv-128

Sample
f f word and
max_pool

conv-256 h’t — tanh(Whhht—l + thxt + bh) copy to

conv-256 in put

maxpool

conv-128

Before:

>
o
A 4
>
[EEN

conv-512

conv-512 N ow: “ “
maxpool tanh(Whhht—l + thxt + Wihv + bh)

conv-512

conv-512 x1

maxpool

FC-4096
FC-4096

Slide from Justin Johnson

https://pixabay.com/en/straw-hat-man-sea-sunlight-sunset-70696/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

This image is CCO public domain

| image | *

conv-64
conv-64

maxpool

Sample
Before: f f f word and
max_pool

conv-256 ht = tanh(Whhht_l + thxt + bh) copy to

conv-256 in put

maxpool

conv-128

conv-128

>
o
A 4
>
[EEN
A 4
>
N

conv-512

conv-512 N ow: “ “ “
maxpool tanh(Whhht—l + thxt + Wihv + bh)

conv-512

maxpool

FC-4096
FC-4096

Slide from Justin Johnson

https://pixabay.com/en/straw-hat-man-sea-sunlight-sunset-70696/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

This image is CCO public domain

. image ¢

conv-64

conv-64

maxpool

conv-128

b Vi v2 3 | Sample
word and

conv-128

= Before:
Eome2st ht — tanh(Whhht_l + thxt + bh) copy to

conv-256 I n p u t
h3

>
o
A 4
>
[EEN
A 4
>
N
\ 4

maxpool

conv-512

conv-512 NOW: “ “ “ “
maxpool tanh(Whhht—l + thxt + Wihv + bh)

conv-512

conv-512 x1 X2 X3

maxpool

FC-4096
FC-4096

Slide from Justin Johnson

https://pixabay.com/en/straw-hat-man-sea-sunlight-sunset-70696/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

This image s CC0 pubic domain Stop after sampling <END> token

| image | *

conv-64
conv-64

maxpool

conv-128 yO yl y2 Y3 vé

conv-128

—— Before:
conv-256 h’t — tanh(Whhht—l + thxt + bh)

conv-256

h4

A 4

h3

>
o
A 4
>
[EEN
A 4
>
N
\ 4

maxpool

conv-512

conv-512 NOW: “ “ “ “ |
maxpool tanh(Whhht—l + thxt + Wihv + bh)

conv-512

conv-512 x1 x2 X3 x4

maxpool

FC-4096
FC-4096

Slide from Justin Johnson

https://pixabay.com/en/straw-hat-man-sea-sunlight-sunset-70696/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

neuraltalk2
CCO Public domain: cat
suitcase, cat tree, dog, bear, surfers

Image Captioning: Example Results

A cat sitting on a suitcase A cat is sitting on a tree A dog is running in the grass A white teddy bear sitting in
on the floor branch with a frisbee the grass

Two people walking on the A tennis player in action on Two giraffes standing in a A man riding a dirt bike on a
beach with surfboards the court grassy field dirt track

Slide from Justin Johnson

https://github.com/karpathy/neuraltalk2
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/luggage-antique-cat-1643010/
https://pixabay.com/en/luggage-antique-cat-1643010/
https://pixabay.com/en/cat-kitten-tree-green-summer-1647775/
https://pixabay.com/en/adorable-animal-canine-cute-dog-1849992/
https://pixabay.com/en/teddy-plush-bears-cute-teddy-bear-1623436/
https://pixabay.com/en/beach-beach-sports-blur-blurry-1853903/
https://pixabay.com/en/tennis-head-ramos-vinolas-clay-934841/
https://pixabay.com/en/giraffe-animals-wildlife-africa-2064520/
https://pixabay.com/en/moto-cross-motorbike-sports-jump-214928/

Captions generated using neuraltalk2
All images are CCO Public domain: fur coat,
handstand, spider web, baseball

Image Captioning: Failure Cases

~ | Abirdis perched on a
tree branch

A woman is holding a cat
in her hand

A manina
baseball uniform
throwing a ball

A woman standing on a beach
holding a surfboard

A person holding a computer
mouse on a desk

Slide from Justin Johnson

https://github.com/karpathy/neuraltalk2
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/woman-female-model-portrait-adult-983967/
https://pixabay.com/en/handstand-lake-meditation-496008/
https://pixabay.com/en/spider-web-tree-branches-pattern-617769/
https://pixabay.com/en/baseball-player-shortstop-infield-1045263/

Vanilla RNN Gradient Flow

4 A ht — tanh(Whhht_l + thxt + bh)

h,_
L = tanh ((Whh th) (;LC 1) + bh)
h, ~ stack — h, " t
S I y. = tanh (W (;_1) + bh)

t

Bengio et al, “Learning long-term dependencies with gradient descent is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, ICML 2013

Slide from Justin Johnson

Vanilla RNN Gradient Flow

Backpropagation from
h, to h,; multiplies by W
(actually W, ,,7)

W ht = tanh(Whhht_l + thxt + bh)
— 7\ tanh
| = tanh | (Whn Why) (ht_l) + by,
. Xt
ht_1 . ~ stack — ht h
_ I) = tanh (W (t_l) + bh)

Xt

Bengio et al, “Learning long-term dependencies with gradient descent is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, ICML 2013

Slide from Justin Johnson

Vanilla RNN Gradient Flow

W—><T>—> tanh

— T stack

h0<—

-

4

|
X1

Computing gradient of
h, involves many
factors of W

(and repeated tanh)

Slide from Justin Johnson

Vanilla RNN Gradient Flow

~— —— stack

h0<—
o

Wﬂgﬁ tanh

4

|
X1

Computing gradient of
h, involves many
factors of W

(and repeated tanh)

Slide from Justin Johnson

Largest singular value > 1:
Exploding gradients

Largest singular value < 1:
Vanishing gradients

Vanilla RNN Gradient Flow

e stack

h0<—

-

Wﬂgﬁ tanh

J

|
X1

Computing gradient of
h, involves many
factors of W

(and repeated tanh)

Slide from Justin Johnson

Largest singular value > 1: Gradient clipping: Scale

Exploding gradients o gradient if its norm is too big

grad_norm = np.sum(grad * grad)
Largest smgular value< 1: if grad_norm > threshold:

Vanishing gradients grad *= (threshold / grad_norm)

Vanilla RNN Gradient Flow

~— —— stack

h0<—
A

Wﬂgﬁ tanh

J

|
X1

Computing gradient of
h, involves many
factors of W

(and repeated tanh)

Slide from Justin Johnson

Largest singular value > 1:
Exploding gradients

Largest singular value < 1:
Vanishing gradients

— Change RNN architecture!

Long Short Term Memory (LSTM)

Vanilla RNN

h, = tanh (W i1 + by,
X

t

Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation 1997

Slide from Justin Johnson

Long Short Term Memory (LSTM)

Vanilla RNN

h; = tanh (W (

he_q
Xt

)0

LSTM

Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation 1997

Slide from Justin Johnson

YR
(5)t

04 o
\gt tanh
¢t =ft Oce—1+1i O gt
h, = o, ® tanh(c,)

Xt

Long Short Term Memory (LSTM)

Vanilla RNN

LSTM

h, = tanh (W i1 + by,
X

t

Two vectors at each timestep:
Cell state: ¢, € R? —

04 o
\gt tanh
¢t =ft Oce—1+1i O gt
h, = o, ® tanh(c,)

YR
(5)t

Xt

Hidden state: h, € RE —

Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation 1997

Slide from Justin Johnson

Long Short Term Memory (LSTM)

Vanilla RNN

t

h, = tanh (W i1 + by,
X

/

Compute four “gates” per timestep:

Input gate: i; € .
Forget gate: f; € .

Output gate: o € |

RH
RH
RH

“Gate?” gate: g, € |

Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation 1997

Slide from Justin Johnson

RH

LSTM

04 o
\gt tanh
¢t =ft Oce—1+1i O gt
h, = o, ® tanh(c,)

YR
(5)t

Xt

Long Short Term Memory (LSTM)

i Input gate, whether to write to cell

f: Forget gate, Whether to erase cell

o: Output gate, How much to reveal cell
g: Gate gate (?), How much to write to cell

Input vector (x)

X
h
W
Previous
hidden
state (h)
4h x 2h

Slide from Justin Johnson

sigmoid

sigmoid

sigmoid

tanh

4h

4*h

” o

ft _(9 (W (ht—l
0¢ o Xt
Jt tanh

o)

¢t =f Oc—1 +i O gy
ht = O @ tanh(ct)

Long Short Term Memory (LSTM)

a N
C1 : ? R
~ f
W_'Q_:;:,::O t;nh
h, 1 N * stack - : i htj

Slide from Justin Johnson

Jt tanh
¢t =ft OcC—1+it O gt
ht = O¢ @ tanh(Ct)

” o
ARG

)

Long Short Term Memory (LSTM): Gradient Flow

a N
C1 ’?:r:ct:
~ f
W_'Q_:;:,::@ t;nh
h, 1 N * stack - : i htj

Slide from Justin Johnson

Backpropagation from c,
to c,; only elementwise
multiplication by f, no
matrix multiply by W

" o

; (:)(W (1) 13,
Ot o) Xt

Jt tanh

¢t =ft OcC—1+it O gt
ht = O¢ @ tanh(Ct)

Long Short Term Memory (LSTM): Gradient Flow

Uninterrupted gradient flow!

a) -) - N
C < =®:+:C<—:C4= =®<_—>+<_—>C<——=C"< =®:+:C<—:C
W_’?‘L g}, © tanh W_’?‘L ;}, © tanh W_’?‘L ;}, © tanh
! ! !
— > stack . |, T % stack [, . |, T % stack [, . i
N p *0 ° —h>7 - p *0 ° —h7 - p *0 ° —~h>7

Slide from Justin Johnson

Long Short Term Memory (LSTM): Gradient Flow

Uninterrupted gradient flow!

D D
—C¢——Cs == —Cx e

o

. . ol kol | kol kel |/ kol keol \[51 121\ 21 2L\ 2L K2 ool kool | el kel || kel keo
Similar to SEL BBl B ELEN B EE LR EE | LR
— Clioll kliel | elle O
5 U_Joo cliel L keliell BEIBILBIB!LBIB . oliell kil Lkl L HE
2| | L Bl BIBloBIBIEIE 6 EIEL S ELE L »: o8]l BIELS BBl 71 E
o SIEITEIE s} | =] = ClE A= . SIEITEIB s} | =] ol B
EIEl EIEl EIEl Hlolk
S B

o lo o Rl Bl ol Pl Pl

IN|IS A I S S IN| NI NN IS IS

E’- — KIK <K <K< =
ResNet! e BIE
N

Slide from Justin Johnson

Long Short Term Memory (LSTM): Gradient Flow

Uninterrupted gradient flow!

Co- POt = C —— > C "0t = C———C,. T = —C
0 f L i 2 f 3
- f > f -1
~o 'L ~o1 'L ~o 'L
W ?;L»g_l_'G) tz1nh W ?LQIQ tz1nh W ?LQIQ tz1nh
—T > stack .0 @_’h__’ —T > stack .0 @_’h__’ —T > stack *O—’@_’h__’

>
| >
| >
| >
B
1>
B
| >
B

In between: Highway Networks

o
i el kel | el | ELELY B L 2l Bl | kLR
S”I“larto Sz IZIEIEISISIS S SIS SLES] | SIS il ko —F x W
S —U-JOO clel | eliell BIBILEBIEB SSL—V olll | klkl L Bl | Il E t) t
2| E | Ela BlBls BIBLs BIBls EIE [EIE LS ELELo»: >0 8}Bls BIBIs BIBI 5 =
o SIEITEIE s} | =] = A= 1= . SIEITEBIE s} | =] ollol B
ResNet! (| EEEIE EE T — g, OHG W) + (1 —g,) O x
ool Pl <l Rl B < I | o —_
- Rl RIRl BlR FlE Bl EE Rl RiE ElR Yt = Jt , Wh gt v
Nl

Srivastava et al, “Highway Networks”, ICML DL Workshop 2015

Slide from Justin Johnson

Single-Layer RNNs

h, = tanh (W -1 + by,
X

t

LSTM:

0]

Lt
)-(2 Jtyen
0t o X

Jt tanh
e =ft Oceo1 +1: O ge
ht = O¢ @ tanh(Ct)

Slide from Justin Johnson

Mutilayer RNNs depth
4 f 1 4
hiy = tanh| W -1 + by,
LSTM

£
[\ o
ftﬁ o W hf—1
Of o hf—l
t tanh ‘
\gf /
ct =ff Ocioa+if O gt
hi =of © tanh(cf)

Two-layer RNN: Pass hidden

states from one RNN as inputs
to another RNN

Yo

Y1

Y2

Y3

Ya

Ys

Ye

A

Slide from Justin Johnson

h2o—r h?—t h%—t h%— h?j—xh % —xih?

hio—tht—rht—r hi3—xhi—rhls—ihlg

Xo X1 Xy X3 Xa Xsg Xe
time

Mutilayer RNNs

h{’
ht = tanh (W (hgj) + b;ﬁ)
t

Three-layer RNN

[i

t o

ftg o h

w

ol o h
tanh

\gf / an

¢t =fi Ociei+if Oy

hi = o] © tanh(cf)

t—1

£—-1
t

4
t

>+b,€

|

Slide from Justin Johnson

Yo Y1 Y2 Y3 Ya Ys Y6

h3o— 3, h3;—1 h33—n h3j—h3 —xh

h2or—*{h2,—h%—x h?%—n h%—xih% —r h%

hig—rht—ht—hs—nh—hls—shls

Xo X1 Xy X3 Xy X5 Xg
time

Other RNN Variants

Gated Recurrent Unit (GRU)

Cho et al “Learning phrase representations
using RNN encoder-decoder for statistical
machine translation”, 2014

re = 0(Werxe + Wypheq + by)
zy = 0(Wyzxy + Whzhe—q + b,)
he = tanh(Wypxe + Whp(rr O he—q) + by)
hy =2 Oheog +(1—2) O Ry

Slide from Justin Johnson

Sequence-to-Sequence with RNNs

Input: Sequence Xy, ... Xt
Output: Sequenceyy, ..., Y

Encoder: h, = f,(x;, hy4)

h, > h, * hj * h,
X1 X5 X3 X4
we are eating bread

Sutskever et al, “Sequence to sequence learning with neural networks”, NeurIPS 2014

Slide from Justin Johnson

Sequence-to-Sequence with RNNs

Input: Sequence Xy, ... Xt
Output: Sequenceyy, ..., Y

From final hidden state predict:

Encoder: h, = fy(x, h,,) Initial decoder state s,
Context vector c (often c=h;)

h, > h, * hj * h, > S
X4 X5 X3 X4 " C
we are eating bread

Sutskever et al, “Sequence to sequence learning with neural networks”, NeurlPS 2014

Slide from Justin Johnson

Sequence-to-Sequence with RNNs

Input: Sequence X, ... X7 Decoder: s; = gy(Y.1, St.1, €)
Output: Sequenceyy, ..., Y

estamos
From final hidden state predict:
Encoder: h, = f,(x, h,,) Initial decoder state s, Y1
]) _

Context vector c (often c=hy) ‘

hy " h, " hs " hy > Sg > S,

Xl X2 X3 X4 > C yo
we are eating bread [START]

Sutskever et al, “Sequence to sequence learning with neural networks”, NeurIPS 2014

Slide from Justin Johnson

Sequence-to-Sequence with RNNs

Input: Sequence X, ... X7 Decoder: s; = gy(Y.1, St.1, €)
Output: Sequenceyy, ..., Y

estamos comiendo

From final hidden state predict:

Encoder: h, = f,y(x,, h.4) Initial decoder state s, Y1 Y2
]) _

Context vector c (often c=h;) ‘ ‘
h; > h, " hs " hy " So "S5 T S
I S
X1 X, X3 X4 " C Yo Y1
we are eating bread [START] estamos

Sutskever et al, “Sequence to sequence learning with neural networks”, NeurIPS 2014

Slide from Justin Johnson

Sequence-to-Sequence with RNNs

Input: Sequence X, ... X7 Decoder: s; = gy(Y.1, St.1, €)
Output: Sequenceyy, ..., Y

estamos comiendo pan [STOP]
From final hidden state predict:
Encoder: h, = fy(x, h,,) Initial decoder state s, Y1 Y2 ¥s Ya
Context vector c (often c=h;) ‘ ‘ ‘ ‘
h; > h, " hs " hy " So *S1 T S2 T T S3 T T %
T (R
X1 X, X3 X4 " C Yo Y1 Y> Y3
we are eating bread [START] estamos comiendo pan

Sutskever et al, “Sequence to sequence learning with neural networks”, NeurIPS 2014

Slide from Justin Johnson

Sequence-to-Sequence with RNNs

Input: Sequence X, ... X7 Decoder: s; = gy(Y.1, St.1, €)
Output: Sequenceyy, ..., Y

estamos comiendo pan [STOP]
From final hidden state predict:
Encoder: h, = fy(x,, h,,) Initial decoder state s, Y1 Y2 ¥s Ya
(]) _
Context vector c (often c=h;) ‘ ‘ ‘ ‘
h; > h, " hs " hy " So *S1 T S2 T T S3 T T %
1T T
X1 X, X3 X4 " C Yo Y1 Y> Y3
we are eating bread Problem: Input sequence [START] estamos comiendo pan

bottlenecked through fixed-
sized vector. What if T=1000?

Sutskever et al, “Sequence to sequence learning with neural networks”, NeurIPS 2014

Slide from Justin Johnson

Sequence-to-Sequence with RNNs

Input: Sequence X, ... X7 Decoder: s; = gy(Y.1, St.1, €)
Output: Sequenceyy, ..., Y

estamos comiendo pan [STOP]
From final hidden state predict:
Encoder: h, = fy(x, h,,) Initial decoder state s, Y1 Y2 ¥s Ya
Context vector c (often c=h;) ‘ ‘ ‘ ‘
h; > h, " hs " hy " So *S1 T S2 T T S3 T T %
T (R
X1 X, X3 X4 " C Yo Y1 Y> Y3
we are eating bread Problem: Input sequence [START] estamos comiendo pan

bottlenecked through fixed-
sized vector. What if T=1000?

Sutskever et al, “Sequence to sequence learning with neural networks”, NeurlPS 2014

Slide from Justin Johnson

Sequence-to-Sequence with RNNs and Attention

Input: Sequence Xy, ... Xt
Output: Sequenceyy, ..., Y

From final hidden state:

Encoder: h, = fy,(x;, hy4) Initial decoder state s,

h, > h, * hj * h, > S
X1 X5 X3 X4
we are eating bread

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide from Justin Johnson

Sequence-to-Sequence with RNNs and Attention

Compute (scalar) alignment scores
€ = fan(Se1, i) (f. is an MLP)

From final hidden state:

(911T e121 e13.T €14 | Initial decoder state s,
I .

h, > h, * hj * h, > S

X1 X5 X3 X4

we are eating bread

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide from Justin Johnson

Sequence-to-Sequence with RNNs and Attention

Compute (scalar) alignment scores
€t = Fare(Se.1, i) (for is an MLP)

dig d1y di3 dig
1 1 = 1 f Normalize alignment scores
5 150 maxT f . _ to get attention weights
From final hidden state: _
. O<ai<l 2ia,=1
€11 €12 €13 €14 | Initial decoder state s,
O 1 A | |
h; > h, " hs " hy " So
X1 X X3 X4
we are eating bread

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide from Justin Johnson

Sequence-to-Sequence with RNNs and Attention

[| [:
X X X X Compute (scalar) alignment scores
i ! ! ! €i = far(Se, i) (f5 is an MLP)
CER] di di3 dig estamos
1 1 ﬂl 1 f Normalize alignment scores
f 150 maxT f . _ to get attention weights
From final hidden state: Y1 _
. O<a;;<l 2pa=1
€11 \ €12 €13 \ €14 | Initial decoder state s,
I T 1 T | ‘ Compute context vector as linear
\ \ \) Y combination of hidden states
hl g hz " h3 - h4 g SO + S1 C; = Z'at h
it
] ‘ ‘ ‘ ‘ ‘ Use context vector in
decoder: s, = , St.1, C
X; X, X; X ¢ | vo t = Bu(Ye1, St-1s Ct)
we are eating bread
[START]

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide from Justin Johnson

Sequence-to-Sequence with RNNs and Attention

[| [.
X X X X Compute (scalar) alignment scores
4 4 4 4 .
€t = Fare(Se.1, i) (for is an MLP)
CER] di di3 dig
1 1 1 1 estamos]]
Normalize alignment scores
soﬂ!max i ivh
f f 7) _ _ to get attention weights
1 From final hidden state: Y1 0 _
. <a;<1l 2a.,=1
€11 \ €12 €13 \ €14 Initial decoder state s, ’ ’
I T 1 T 1 : ‘ Compute context vector as linear
H \ o \ o \ " + combination of hidden states
‘ . . > S S
1 2 3 4 0 1 Ct - Ziat,ihi
] ‘ ‘ ‘ Intuition: Context vector ‘ ‘ Use context vector in
attends to the relevant ‘ decoder: s, = g,(Yi1, St.1, Ct)
Xl Xz X3 X4 . i Cl yO
part of the input sequence
we are eating bread estamos™ = “we are
so maybe a;;=a,,=0.45, [START]
a13=a1,=0.05

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide from Justin Johnson

Seq uence‘tO‘Seq uence W|th RN NS Repeat: Use s, to compute

new context vector c,

b ¢ b ¢ X X
I\ I\ I\ I\
d
3121 a;z a§3 %4 estamos
soffmax

i 1 \ i i Ve
€71 \ €77 €53 \ €24 ! T

A 2 A +

\r A\ !
hl hz o h3 h4 SO 51

we are eating bread
[START]

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide from Justin Johnson

Sequence-to-Sequence with RNNs and Attention

X X X X
4 4 L § 4
a a a a
121 %2 ;3 %4 estamos comiendo
f 150 maxT f Repeat: Use s, to
e e e o Y1 Y2 | compute new context
£t £l . 1 ‘ vector ¢,
\ \ \ ‘ | Use c, to compute s,, v,
hl hz " h3 h4 SO 51 > 52

I . 1N

X1 X3 X3 Xy Ci1 || Yo C | Y1

we are eating bread
[START] estamos

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide from Justin Johnson

Sequence-to-Sequence with RNNs and Attention

p X X %
) ’ I\ N
Al A il A sl B &
SoTgmax
| f | |
€71 \ €77 €53 €24

»
»
Jumm—
n
»
+ fe

estamos

comiendo

Repeat: Use s, to
Y2 compute new context

:SO

‘ ‘ Intuition: Context vector
attends to the relevant
part of the input sequence
“comiendo” = “eating”

so maybe a,;=a,,=0.05,
a,»,=0.1, a,3=0.8

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

we are eating bread

Slide from Justin Johnson

Yo

[START]

‘ vector c,

|

Use c, to compute s,, v,

C 1 Y1

estamos

Sequence-to-Sequence with RNNs and Attention

Use a different context vector in each timestep of decoder

- Input sequence not bottlenecked through single vector

- At each timestep of decoder, context vector “looks at”
different parts of the input sequence

\ 4

h, > h, hs
X1 X X3
we are eating

X4

bread

estamos

Y1

comiendo

|

i

<

)

—

|

|

|

pan

Y3

[STOP]

Cq

Yo Cy

Y1

A

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide from Justin Johnson

[START]

estamos

comiendo

pan

Sequence-to-Sequence with RNNs and Attention

Visualize attention weights a ;

Example: English to French 2 g E o)
o (- 8 5 (N -8
translation é’%g%%ﬁgéa‘?s?% v
L
Input: “The agreement on the accord
sur
European Economic Area was la
signed in August 1992” zone
économique
européenne
Output: “l'accord sur la zone a
, . , été
économique européenne a signé
été signé en ao(t 1992.” en

ao(t
1992

<end>
Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide from Justin Johnson

Sequence-to-Sequence with RNNs and Attention

Visualize attention weights a ;

Example: English to French ; < §
o Q o =
translation ¢ > £
© il wl

|nput; “The agreement on the Diagonal attention means Jaccord

. words correspond in order
European Economic Area was

signed in August 1992

zone
économique
européenne

Output: “L'accord sur la zone
économique européenne a
été signé en aout 1992

Diagonal attention means
words correspond in order

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide from Justin Johnson

Sequence-to-Sequence with RNNs and Attention

Visualize attention weights a ;

Example: English to French 2 5 i
. @ C
translation 2 25 8
© W w <
Input: “The agreement on the Diagonal attention means
words correspond in order
was
signed in August 1992” - zone
economique
européenne
Output: “L'accord sur la
a

été signé en aout 1992

Diagonal attention means
words correspond in order

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide from Justin Johnson

Sequence-to-Sequence with RNNs and Attention

Visualize attention weights a ;

Example: English to French 2 5 i
. @ C
translation 2 ° 5
© i
Input: “The agreement on the Diagonal attention means accord
words correspond in order
was
signed in August 1992 zone
économique
européenne
Output: “L'accord sur la
3 Verb conjugation

été signé en aolt 1992

Diagonal attention means
words correspond in order

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide from Justin Johnson

Sequence-to-Sequence with RNNs and Attention

The decoder doesn’t use the fact that
h, form an ordered sequence — it just
treats them as an unordered set {h;}

-
[
v
-
N
-
w

we are eating

estamos comiendo pan [STOP]
Can use similar architecture given any
. . | Y1 Y2 Y3 Ya
set of input hidden vectors {h}!
* h, > S, S > S, ™ S — 5,
Xa C1 1| Yo G| Y1 G|l Y2 Cs| Y3
bread
[START] estamos comiendo pan

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide from Justin Johnson

Attention

Us Vi = Zwijxij
w;; = softmax; (x] x; /N dy)
ex?xj
A Wij = Z-ex?xj
® ’

Source: http://peterbloem.nl/blog/transformers See also: Attention is all you need

http://peterbloem.nl/blog/transformers
https://arxiv.org/abs/1706.03762

Attention (with key, query and value)

Y2

Yi = Z wiiWoXij
J

g) Wij = Softmaxj((qui)Tkaj/\/dk)
|

X1 X2 X3 X4

Source: http://peterbloem.nl/blog/transformers See also: Attention is all you need

http://peterbloem.nl/blog/transformers
https://arxiv.org/abs/1706.03762

The Transformer

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Slide from Justin Johnson

The Transformer

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Slide from Justin Johnson

All vectors interact
with each other

t
Self-Attention
t t
1 1

X3 X3

The Transformer

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Slide from Justin Johnson

Residual connection

All vectors interact
with each other

Self-Attention
t t
]]
X3 X3

P

The Transformer

Recall Layer Normalization:
Given hy, ..., hy (Shape: D)

scale:y (Shape: D)
shift: (Shape: D)
w = (3 hi;)/D (scalar)
o= (3 (h; - 1:)2/D)Y2 (scalar) Layer Normalization
Zi = (hi*' w) / o, Residual connection =(J:r)
Vizy 7+ B All vectors interact Self-Attention
with each other - t t
Ba et al, 2016 I ! !
X1 X, X3

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Slide from Justin Johnson

The Transformer

Recall Layer Normalization:

Given hy, ..., hy (Shape: D) N
5C5_3|E3 Y (Shape: D) MLp independently MlLP MILP MILP MILP
shift: 5 (Shape: D) on each vector | * f
w = (3 h;;)/D (scalar) |
o= (3 (h; - 1:)2/D)Y2 (scalar) Layer Normalization
Zi = (hi*')/ o, Residual connection =(J:r)
Vizy 7+ B All vectors interact Self-Attention
with each other - t t t
I I I I

Ba et al, 2016

X4 X, X3 X,

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Slide from Justin Johnson

The Transformer

Recall Layer Normalization:

Given h,, .. hy (Shape: D) Residual connection {?
5C5_3|E3 Y (Shape: D) MLP independently MlLP MILP MILP MILP
shift: 5 (Shape: D) on each vector f * f
w = (3 hi;)/D (scalar)
o= (3 (h; - 1:)2/D)Y2 (scalar) Layer Normalization
Zi = (hi*') / o Residual connection =(J:r)
Vizy 7+ B All vectors interact Self-Attention
with each other - t t t
Ba et al, 2016 I ! ! I
X1 X, X3 X,

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Slide from Justin Johnson

The Tl'a ﬂSfOrmer Y1 Y2 Y3 Ya
I I I I

Layer Normalization

Recall Layer Normalization: Aual . ‘
Givenh,, .., hy (Shape: D) Residual connection Q“r)
: : | |
scz?le. Y (Shape: D) MLp independently MLP MILP MLP MILP
shift: 5 (Shape: D) on each vector f * f
w = (3 hi;)/D (scalar)
o= (3 (h; - 1:)2/D)Y2 (scalar) Layer Normalization
2= (hi- W) / oy Residual connection =(J:r)
—_ *
Vizy 7+ B All vectors interact Self-Attention
with each other - t t t
Ba et al, 2016 I ! ! I
X4 X, X3 X,

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Slide from Justin Johnson

The Transformer

Y1 Y2 Y3 Ya
i i i I
Transformer Block: Layer Normalization
Input: Set of vectors x :Q:r)
Output: Set of vectors y

MLP MLP MLP MLP

Self-attention is the only
interaction between vectors!

Layer Normalization

Layer norm and MLP work =Q:,)
independently per vector

Self-Attention
ot f f t
Highly scalable, highly t t ! !
parallelizable X X X X
1 2 3 4

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Slide from Justin Johnson

Post-Norm Transformer v yz Vs Vi
f f f f

Layer Normalization

:$

MLP MLP MLP MLP

IS
]] Layer Normalization
after residual connections (:)
(+
Self-Attention
-t t t {
1 1] 1
X1 X X3 X4

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Slide from Justin Johnson

Pre-Norm Transformer

IS
inside residual connections

Gives more stable training,
commonly used in practice

Baevski & Auli, “Adaptive Input Representations for Neural Language Modeling”, arXiv 2018

Slide from Justin Johnson

Y1 Y2 Y3 Ys
1 1 1]
@{):
| | | |
MLP MLP MLP MLP
I
Layer Normalization
&

Y
Self-Attention
)

Layer Normalization
t t t t
! ! ! !
X4 X, X3 X4

The Transformer

Transformer Block:
Input: Set of vectors x
Output: Set of vectors y

Self-attention is the only
interaction between vectors!

Layer norm and MLP work
independently per vector

Highly scalable, highly
parallelizable

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Slide from Justin Johnson

A Transformer is a sequence
of transformer blocks

Vaswani et al:
12 blocks, Dg=512, 6 heads

1 1 1 1

Layer Normalization

[I I
M| (M| M| [
t t
7
Layer Normalization
Self-Attention
1 1 1 t

I
|

Layer Normalization

[I
M| (mep | (mp | e
t i f
]
Layer Normalization
Self-Attention
t t t 1

t t ! 1
1 1 t i

Layer Normalization

[I
M| [MP | (mp | e
t t
]
Layer Normalization
Self-Attention
t t 1 t

B N

The Transformer

Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the
English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

Model BLEU Training Cost (FLOPs)
© EN-DE EN-FR EN-DE EN-FR

ByteNet [18] 23.75

Deep-Att + PosUnk [39] 39.2 1.0 - 10%°
GNMT + RL [38] 24.6 39.92 2.3-109 1.4.10%0
ConvS2S [9] 25.16 40.46 9.6-10® 1.5-10%°
MOoE [32] 26.03 40.56 2.0-10'% 1.2.1020
Deep-Att + PosUnk Ensemble [39] 40.4 8.0 - 10%°
GNMT + RL Ensemble [38] 2630 41.16 1.8-10%° 1.1-10*
ConvS2S Ensemble [9] 2636 41.29 7.7-101° 1.2.10%!
Transformer (base model) 27.3 38.1 3.3.10'8

Transformer (big) 28.4 41.8 2.3 - 1019

Vaswani et al, “Attention is all you need”, NeurIPS 2017

The Transformer: Transfer Learning

“ImageNet Moment for Natural Language Processing”

Pretraining:
Download a lot of text from the internet

Train a giant Transformer model for language modeling

Finetuning:
Fine-tune the Transformer on your own NLP task

Devlin et al, "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding", EMNLP 2018

Slide from Justin Johnson

1 1 1 1

Layer Normalization

|

I
‘Me | M| mee | MLP |

Layer Normalization

Self-Attention

Layer Normalization

Mp | M| mee | ML |

Layer Normalization

Self-Attention

Layer Normalization

‘MW“MW“MW“MW‘

Layer Normalization

Self-Attention

The Transformer: Transfer Learning

K@
.

Mask LM Mask LM
. 3

\

®
SNt Eae

BERT -

Tiser)

Ees) E, Ev E[SEP] E/ E,
— o o &
| [CLS] || Tok 1 | [TokN][[SEP]][Toln] [TOKM]

I

| | | |

Masked Sentence A

Masked Sentence B
*
Unlabeled Sentence A and B Pair

Pre-training

Devlin et al, "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding", EMNLP 2018

Start/End Spam

a9

EA EAE™MEA E£2
g1 BERT
Ees || E Ey Eeery || Ef Ew
e o e

Question

*

Question Answer Pair

. (R (=) () --
G- G

Paragraph

/

Fine-Tuning

The Transformer: Transfer Learning

System MNLI-(m/mm) QQP QNLI SST-2 CoLA STS-B MRPC RTE Average
392k 363k 108k 67k 8.5k 5.7k 3.5k 2.5k -
Pre-OpenAl SOTA 80.6/80.1 66.1 82.3 93.2 35.0 81.0 86.0 61.7 74.0
BiLSTM+ELMo+Attn 76.4/76.1 64.8 79.8 90.4 36.0 7133 84.9 56.8 71.0
OpenAl GPT 82.1/81.4 70.3 87.4 91.3 45.4 80.0 82.3 56.0 75.1
BERTgAsE 84.6/83.4 712 90.5 93.5 321 85.8 88.9 66.4 79.6
BERTLARrGE 86.7/85.9 72.1 92.7 94.9 60.5 86.5 89.3 70.1 82.1

Table 1: GLUE Test results, scored by the evaluation server (https://gluebenchmark.com/leaderboard).
The number below each task denotes the number of training examples. The “Average” column is slightly different
than the official GLUE score, since we exclude the problematic WNLI set.® BERT and OpenAl GPT are single-
model, single task. F1 scores are reported for QQP and MRPC, Spearman correlations are reported for STS-B, and
accuracy scores are reported for the other tasks. We exclude entries that use BERT as one of their components.

Devlin et al, "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding", EMNLP 2018

