
Sequence Modeling (RNNs)
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So far: “Feedforward” Neural Networks

2

e.g. Image classifica,on
Image -> Label
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Recurrent Neural Networks: Process Sequences

3

e.g. Image Cap,oning: 
Image -> sequence of words



Slide from Jus.n Johnson

Recurrent Neural Networks: Process Sequences

4

e.g. Video classification:
Sequence of images -> label
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Recurrent Neural Networks: Process Sequences

5

e.g. Machine Translation:
Sequence of words -> Sequence of words
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Recurrent Neural Networks: Process Sequences

6

e.g. Per-frame video classification:
Sequence of images -> Sequence of labels
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Sequential Processing of Non-Sequential Data

7

Ba, Mnih, and Kavukcuoglu, “Mul3ple Object Recogni3on with Visual A?en3on”, ICLR 2015.
Gregor et al, “DRAW: A Recurrent Neural Network For Image Genera3on”, ICML 2015

Classify images by taking 
a series of “glimpses”
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Sequen=al Processing of Non-Sequen=al Data

8

Gregor et al, “DRAW: A Recurrent Neural Network For Image Generation”, ICML 2015

Generate images one piece at a time!
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Recurrent Neural Networks

10

x

RNN

y

Key idea: RNNs have an 
“internal state” that is 
updated as a sequence 
is processed
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ℎ! = 𝑓" ℎ!#$, 𝑥!

Recurrent Neural Networks

11

x

RNN

y
We can process a sequence of vectors x by 
applying a recurrence formula at every time step:

new state old state input vector at 
some 2me step

some func2on
with parameters W
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ℎ! = 𝑓" ℎ!#$, 𝑥!

Recurrent Neural Networks

12

x

RNN

y
We can process a sequence of vectors x by 
applying a recurrence formula at every 7me step:

new state old state input vector at 
some 2me step

some function
with parameters W

NoIce: the same funcIon and 
the same set of parameters 
are used at every Ime step.
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(Vanilla) Recurrent Neural Networks

13

x

RNN

y

The state consists of a single “hidden” vector h:

Some%mes called a “Vanilla RNN” or an 
“Elman RNN” a5er Prof. Jeffrey Elman

ℎ! = 𝑓" ℎ!#$, 𝑥!

ℎ! = tanh 𝑊""ℎ!#$ +𝑊%"𝑥! + 𝑏"
𝑦! = 𝑊"&ℎ! + 𝑏&
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RNN Computa=onal Graph

14

h0

x1

Initial hidden state
Either set to all 0,
Or learn it
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RNN Computa=onal Graph

15

h0 fW h1

x1
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RNN Computational Graph

16

h0 fW h1 fW h2

x2x1
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RNN Computa=onal Graph

17

h0 fW h1 fW h2 fW h3

x3

…

x2x1

hT
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RNN Computa=onal Graph

18

h0 fW h1 fW h2 fW h3

x3

…

x2x1W

hT

Re-use the same weight matrix at every time-step
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RNN Computa=onal Graph (Many to Many)

19

h0 fW h1 fW h2 fW h3

x3

yT

…

x2x1W

hT

y3y2y1
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RNN Computa=onal Graph (Many to Many)

20

h0 fW h1 fW h2 fW h3

x3

yT

…

x2x1W

hT

y3y2y1 L1 L2 L3 LT
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RNN Computa=onal Graph (Many to Many)

21

h0 fW h1 fW h2 fW h3

x3

yT

…

x2x1W

hT

y3y2y1 L1 L2 L3 LT

L
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RNN Computational Graph (Many to One)

22

h0 fW h1 fW h2 fW h3

x3

y

…

x2x1W

hT
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RNN Computational Graph (One to Many)

23

h0 fW h1 fW h2 fW h3

yT

…

x
W

hT

y3y2y1



Slide from Jus.n Johnson

Sequence to Sequence (seq2seq)
(Many to one) + (One to many)

24

h0 fW h1 fW h2 fW h3

x3

… 

x2x1W1

hT

Many to one: Encode input 
sequence in a single vector

Sutskever et al, “Sequence to Sequence Learning with Neural Networks”, NIPS 2014
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Sequence to Sequence (seq2seq)
(Many to one) + (One to many)

25

h0 fW h1 fW h2 fW h3

x3

… 

x2x1W1

hT

y1 y2

… 

Many to one: Encode input 
sequence in a single vector

One to many: Produce 
output sequence from 
single input vector

fW h1 fW h2 fW

W2

Sutskever et al, “Sequence to Sequence Learning with Neural Networks”, NIPS 2014
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Example: Language Modeling

26

Training sequence: ”hello”

Vocabulary: [h, e, l, o]

Given characters 1, 2, …, t-1, 
model predicts character t
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Example: Language Modeling

27

Training sequence: ”hello”

Vocabulary: [h, e, l, o]

Given characters 1, 2, …, t-1, 
model predicts character t
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Example: Language Modeling

28

Training sequence: ”hello”

Vocabulary: [h, e, l, o]

Given characters 1, 2, …, t-1, 
model predicts character t
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Example: Language Modeling

29

Training sequence: ”hello”

Given “h”, predict “e”

Vocabulary: [h, e, l, o]

Given characters 1, 2, …, t-1, 
model predicts character t



Slide from Justin Johnson

Example: Language Modeling

30

Training sequence: ”hello”

Given “he”, predict “l”

Vocabulary: [h, e, l, o]

Given characters 1, 2, …, t-1, 
model predicts character t
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Example: Language Modeling

31

Training sequence: ”hello”

Given “hel”, predict “l”

Vocabulary: [h, e, l, o]

Given characters 1, 2, …, t-1, 
model predicts character t
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Example: Language Modeling

32

Training sequence: ”hello”

Given characters 1, 2, …, t-1, 
model predicts character t

Given “hell”, predict “o”

Vocabulary: [h, e, l, o]



Slide from Justin Johnson

Example: Language Modeling

33

Vocabulary: [h, e, l, o]

Training sequence: ”hello”

At test-2me, generate new 
text: sample characters one 
at a 2me, feed back to model

.03

.13

.00

.84
So5max

“e
”Sample
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Example: Language Modeling

34

Vocabulary: [h, e, l, o]

Training sequence: ”hello”

At test-2me, generate new 
text: sample characters one 
at a 2me, feed back to model

.03

.13

.00

.84
So5max

“e
”Sample
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Example: Language Modeling

35

Vocabulary: [h, e, l, o]

Training sequence: ”hello”

At test-2me, generate new 
text: sample characters one 
at a 2me, feed back to model

.03

.13

.00

.84
So5max

“e
”Sample

.25

.20

.05

.50

“l
”
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Example: Language Modeling

36

Vocabulary: [h, e, l, o]

Training sequence: ”hello”

At test-2me, generate new 
text: sample characters one 
at a 2me, feed back to model

.03

.13

.00

.84

.25

.20

.05

.50

.11

.17

.68

.03

.11

.02

.08

.79
Softmax

“e
”

“l
”

“l
”

“o
”Sample
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Example: Language Modeling

37

So far: encode inputs 
as one-hot-vector

.03

.13

.00

.84

.25

.20

.05

.50

.11

.17

.68

.03

.11

.02

.08

.79
Softmax

“e
”

“l
”

“l
”

“o
”Sample

[w11 w12 w13 w14] [1]      [w11]
[w21 w22 w23 w14] [0]  =  [w21]
[w31 w32 w33 w14] [0]      [w31]

[0]
Matrix mulIply with a one-hot vector just 
extracts a column from the weight matrix.
ORen extract this into a separate 
embedding layer
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Example: Language Modeling

38

So far: encode inputs 
as one-hot-vector

[w11 w12 w13 w14] [1]      [w11]
[w21 w22 w23 w14] [0]  =  [w21]
[w31 w32 w33 w14] [0]      [w31]

[0]
Matrix mulIply with a one-hot vector just 
extracts a column from the weight matrix.
ORen extract this into a separate 
embedding layer

.03

.13

.00

.84

.25

.20

.05

.50

.11

.17

.68

.03

.11

.17

.68

.03

Embedding 
layer
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Backpropagation Through Time

39

Loss

Forward through en.re sequence to 
compute loss, then backward through 
en.re sequence to compute gradient
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Backpropagation Through Time

40

Loss

Forward through entire sequence to 
compute loss, then backward through 
entire sequence to compute gradient

Problem: Takes a lot of 
memory for long sequences!
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Truncated Backpropaga=on Through Time

41

Loss

Run forward and backward 
through chunks of the sequence 
instead of whole sequence
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Truncated Backpropagation Through Time

42

Loss

Carry hidden states 
forward in Ime forever, 
but only backpropagate 
for some smaller number 
of steps
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Truncated Backpropaga=on Through Time

43

Loss
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Example: Image Captioning

65

Figure from Karpathy et a, “Deep Visual-Seman:c Alignments 
for Genera:ng Image Descrip:ons”, CVPR 2015

Mao et al, “Explain Images with Mul8modal Recurrent Neural Networks”, NeurIPS 2014 Deep Learning and Representa8on Workshop
Karpathy and Fei-Fei, “Deep Visual-Seman8c Alignments for Genera8ng Image Descrip8ons”, CVPR 2015
Vinyals et al, "Show and Tell: A Neural Image Cap8on Generator”, CVPR 2015
Donahue et al, “Long-term Recurrent Convolu8onal Networks for Visual Recogni8on and Descrip8on”, CVPR 2015
Chen and Zitnick, “Learning a Recurrent Visual Representa8on for Image Cap8on Genera8on”, CVPR 2015
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Example: Image Cap=oning

66

Figure from Karpathy et a, “Deep Visual-Seman:c Alignments 
for Genera:ng Image Descrip:ons”, CVPR 2015

Convolutional Neural Network

Recurrent 
Neural 
Network
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This image is CC0 public domain

X

Transfer learning: Take 
CNN trained on ImageNet, 
chop off last layer

67

https://pixabay.com/en/straw-hat-man-sea-sunlight-sunset-70696/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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This image is CC0 public domain

x0

<START>

68

https://pixabay.com/en/straw-hat-man-sea-sunlight-sunset-70696/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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This image is CC0 public domain

h0

x0

y0

<START>Wih

Before:
ℎ! = tanh 𝑾𝒉𝒉𝒉𝒕$𝟏 +𝑾𝒙𝒉𝒙𝒕 + 𝑏'

Now:
tanh 𝑾𝒉𝒉𝒉𝒕#𝟏 +𝑾𝒙𝒉𝒙𝒕 +𝑾𝒊𝒉𝒗 + 𝑏'

69

https://pixabay.com/en/straw-hat-man-sea-sunlight-sunset-70696/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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This image is CC0 public domain

h0

x0

y0

<START>Wih

man

man

Sample 
word and 
copy to 
input

Before:
ℎ! = tanh 𝑾𝒉𝒉𝒉𝒕$𝟏 +𝑾𝒙𝒉𝒙𝒕 + 𝑏'

Now:
tanh 𝑾𝒉𝒉𝒉𝒕#𝟏 +𝑾𝒙𝒉𝒙𝒕 +𝑾𝒊𝒉𝒗 + 𝑏'

70

https://pixabay.com/en/straw-hat-man-sea-sunlight-sunset-70696/
https://creativecommons.org/publicdomain/zero/1.0/deed.en


Slide from Justin Johnson

This image is CC0 public domain

h0

x0

y0

<START>Wih

man

man

Sample 
word and 
copy to 
input

x1

h1

y1

in

in

Before:
ℎ! = tanh 𝑾𝒉𝒉𝒉𝒕$𝟏 +𝑾𝒙𝒉𝒙𝒕 + 𝑏'

Now:
tanh 𝑾𝒉𝒉𝒉𝒕#𝟏 +𝑾𝒙𝒉𝒙𝒕 +𝑾𝒊𝒉𝒗 + 𝑏'

71

https://pixabay.com/en/straw-hat-man-sea-sunlight-sunset-70696/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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This image is CC0 public domain

h0

x0

y0

<START>Wih

man

man

Sample 
word and 
copy to 
input

x1

h1

y1

in

in

x2

h2

y2

str
aw

stra
w

Before:
ℎ! = tanh 𝑾𝒉𝒉𝒉𝒕$𝟏 +𝑾𝒙𝒉𝒙𝒕 + 𝑏'

Now:
tanh 𝑾𝒉𝒉𝒉𝒕#𝟏 +𝑾𝒙𝒉𝒙𝒕 +𝑾𝒊𝒉𝒗 + 𝑏'

72

https://pixabay.com/en/straw-hat-man-sea-sunlight-sunset-70696/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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This image is CC0 public domain

h0

x0

y0

<START>Wih

man

man

Sample 
word and 
copy to 
input

x1

h1

y1

in

in

x2

h2

y2

str
aw

stra
w

x3

h3

y3

hat

hat

Before:
ℎ! = tanh 𝑾𝒉𝒉𝒉𝒕$𝟏 +𝑾𝒙𝒉𝒙𝒕 + 𝑏'

Now:
tanh 𝑾𝒉𝒉𝒉𝒕#𝟏 +𝑾𝒙𝒉𝒙𝒕 +𝑾𝒊𝒉𝒗 + 𝑏'

73

https://pixabay.com/en/straw-hat-man-sea-sunlight-sunset-70696/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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h0

x0

y0

<START>

x1

h1

y1

x2

h2

y2

man in str
aw

x3

h3

y3

x4

h4

y4

hat
<END>

man in stra
w hat

This image is CC0 public domain

Wih

Stop after sampling <END> token

Before:
ℎ! = tanh 𝑾𝒉𝒉𝒉𝒕$𝟏 +𝑾𝒙𝒉𝒙𝒕 + 𝑏'

Now:
tanh 𝑾𝒉𝒉𝒉𝒕#𝟏 +𝑾𝒙𝒉𝒙𝒕 +𝑾𝒊𝒉𝒗 + 𝑏'

74

https://pixabay.com/en/straw-hat-man-sea-sunlight-sunset-70696/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Image Cap=oning: Example Results

75

A cat si(ng on a suitcase 
on the floor

A cat is si(ng on a tree 
branch

A dog is running in the grass 
with a frisbee

A white teddy bear si(ng in 
the grass

Two people walking on the 
beach with surfboards

Two giraffes standing in a 
grassy field

A man riding a dirt bike on a 
dirt track

A tennis player in ac;on on 
the court

Cap:ons generated using neuraltalk2
All images are CC0 Public domain: cat 
suitcase, cat tree, dog, bear, surfers, 
tennis, giraffe, motorcycle

https://github.com/karpathy/neuraltalk2
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/luggage-antique-cat-1643010/
https://pixabay.com/en/luggage-antique-cat-1643010/
https://pixabay.com/en/cat-kitten-tree-green-summer-1647775/
https://pixabay.com/en/adorable-animal-canine-cute-dog-1849992/
https://pixabay.com/en/teddy-plush-bears-cute-teddy-bear-1623436/
https://pixabay.com/en/beach-beach-sports-blur-blurry-1853903/
https://pixabay.com/en/tennis-head-ramos-vinolas-clay-934841/
https://pixabay.com/en/giraffe-animals-wildlife-africa-2064520/
https://pixabay.com/en/moto-cross-motorbike-sports-jump-214928/
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Image Captioning: Failure Cases

76

Captions generated using neuraltalk2
All images are CC0 Public domain: fur coat, 
handstand, spider web, baseball

A woman is holding a cat 
in her hand

A woman standing on a beach 
holding a sur<oard

A person holding a computer 
mouse on a desk

A bird is perched on a 
tree branch

A man in a 
baseball uniform 
throwing a ball

https://github.com/karpathy/neuraltalk2
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/woman-female-model-portrait-adult-983967/
https://pixabay.com/en/handstand-lake-meditation-496008/
https://pixabay.com/en/spider-web-tree-branches-pattern-617769/
https://pixabay.com/en/baseball-player-shortstop-infield-1045263/
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Vanilla RNN Gradient Flow

77

Bengio et al, “Learning long-term dependencies with gradient descent is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, ICML 2013

ht-1

xt

W

stack

tanh

ht

ℎ! = tanh 𝑊''ℎ!$( +𝑊)'𝑥! + 𝑏'

ℎ! = tanh 𝑊'' 𝑊')
ℎ!$(
𝑥!

+ 𝑏'

ℎ! = tanh 𝑊 ℎ!$(
𝑥!

+ 𝑏'
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Vanilla RNN Gradient Flow

78

Bengio et al, “Learning long-term dependencies with gradient descent is difficult”, IEEE TransacNons on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, ICML 2013

ht-1

xt

W

stack

tanh

ht

Backpropaga%on from 
ht to ht-1 mul%plies by W 
(actually Whh

T)

ℎ! = tanh 𝑊''ℎ!$( +𝑊)'𝑥! + 𝑏'

ℎ! = tanh 𝑊'' 𝑊')
ℎ!$(
𝑥!

+ 𝑏'

ℎ! = tanh 𝑊 ℎ!$(
𝑥!

+ 𝑏'
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Vanilla RNN Gradient Flow

79

h0 h1 h2 h3 h4

x1 x2 x3 x4

Computing gradient of 
h0 involves many 
factors of W
(and repeated tanh)
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Vanilla RNN Gradient Flow

80

h0 h1 h2 h3 h4

x1 x2 x3 x4

Computing gradient of 
h0 involves many 
factors of W
(and repeated tanh)

Largest singular value > 1: 
Exploding gradients

Largest singular value < 1:
Vanishing gradients
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Vanilla RNN Gradient Flow

81

h0 h1 h2 h3 h4

x1 x2 x3 x4

CompuIng gradient of 
h0 involves many 
factors of W
(and repeated tanh)

Largest singular value > 1: 
Exploding gradients

Largest singular value < 1:
Vanishing gradients

Gradient clipping: Scale 
gradient if its norm is too big
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Vanilla RNN Gradient Flow

82

h0 h1 h2 h3 h4

x1 x2 x3 x4

CompuIng gradient of 
h0 involves many 
factors of W
(and repeated tanh)

Largest singular value > 1: 
Exploding gradients

Largest singular value < 1:
Vanishing gradients

Change RNN architecture!
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Long Short Term Memory (LSTM)

83

Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation 1997

Vanilla RNN

ℎ! = tanh 𝑊 ℎ!"#
𝑥!

+ 𝑏$
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Long Short Term Memory (LSTM)

84

Vanilla RNN LSTM

Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation 1997

𝑖!
𝑓!
𝑜!
𝑔!

=

𝜎
𝜎
𝜎

tanh

𝑊 ℎ!"#
𝑥!

+ 𝑏$

𝑐! = 𝑓! ⊙ 𝑐!"# + 𝑖! ⊙𝑔!
ℎ! = 𝑜! ⊙ tanh 𝑐!

ℎ! = tanh 𝑊 ℎ!"#
𝑥!

+ 𝑏$
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Long Short Term Memory (LSTM)

85

Vanilla RNN LSTM

Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation 1997

𝑖!
𝑓!
𝑜!
𝑔!

=

𝜎
𝜎
𝜎

tanh

𝑊 ℎ!"#
𝑥!

+ 𝑏$

𝑐! = 𝑓! ⊙ 𝑐!"# + 𝑖! ⊙𝑔!
ℎ! = 𝑜! ⊙ tanh 𝑐!

ℎ! = tanh 𝑊 ℎ!"#
𝑥!

+ 𝑏$

Two vectors at each timestep:
Cell state: 𝑐! ∈ ℝ*

Hidden state: ℎ! ∈ ℝ*
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Long Short Term Memory (LSTM)

86

Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation 1997

Compute four “gates” per timestep:
Input gate: i+ ∈ ℝ*

Forget gate: f+ ∈ ℝ*
Output gate: o+ ∈ ℝ*

“Gate?” gate: g+ ∈ ℝ*

Vanilla RNN LSTM
𝑖!
𝑓!
𝑜!
𝑔!

=

𝜎
𝜎
𝜎

tanh

𝑊 ℎ!"#
𝑥!

+ 𝑏$

𝑐! = 𝑓! ⊙ 𝑐!"# + 𝑖! ⊙𝑔!
ℎ! = 𝑜! ⊙ tanh 𝑐!

ℎ! = tanh 𝑊 ℎ!"#
𝑥!

+ 𝑏$
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Long Short Term Memory (LSTM)

87

x

h

Previous 
hidden 
state (h)

W

i

f

o

g

Input vector (x)

sigmoid

sigmoid

tanh

sigmoid

4h x 2h 4h 4*h

i: Input gate, whether to write to cell
f: Forget gate, Whether to erase cell
o: Output gate, How much to reveal cell
g: Gate gate (?), How much to write to cell

𝑖!
𝑓!
𝑜!
𝑔!

=

𝜎
𝜎
𝜎

tanh

𝑊 ℎ!"#
𝑥!

+ 𝑏$

𝑐! = 𝑓!⊙ 𝑐!"# + 𝑖!⊙𝑔!
ℎ! = 𝑜!⊙ tanh 𝑐!
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☉ct-1

ht-1

xt

f
i
g

o

W ☉

+ ct

tanh

☉ ht
stack

𝑖(
𝑓(
𝑜(
𝑔(

=

𝜎
𝜎
𝜎

tanh

𝑊 ℎ(#)
𝑥(

+ 𝑏'

𝑐( = 𝑓(⊙ 𝑐(#) + 𝑖(⊙𝑔(
ℎ( = 𝑜(⊙ tanh 𝑐(
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☉ct-1

ht-1

xt

f
i
g

o

W ☉

+ ct

tanh

☉ ht
stack

BackpropagaIon from ct
to ct-1 only elementwise 
mulIplicaIon by f, no 
matrix mulIply by W

𝑖(
𝑓(
𝑜(
𝑔(

=

𝜎
𝜎
𝜎

tanh

𝑊 ℎ(#)
𝑥(

+ 𝑏'

𝑐( = 𝑓(⊙ 𝑐(#) + 𝑖(⊙𝑔(
ℎ( = 𝑜(⊙ tanh 𝑐(
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c0 c1 c2 c3

Uninterrupted gradient flow!
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c0 c1 c2 c3

Uninterrupted gradient flow!

Input

Softm
ax

3x3 conv, 64

7x7 conv, 64 / 2

FC
 1000

Pool

3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 128
3x3 conv, 128 / 2

3x3 conv, 128
3x3 conv, 128

3x3 conv, 128
3x3 conv, 128

...

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

Pool

Similar to 
ResNet!
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𝑔( = 𝐹 𝑥,𝑊(
𝑦( = 𝑔(⊙𝐻 𝑥,𝑊' + 1 − 𝑔( ⊙𝑥(

Long Short Term Memory (LSTM): Gradient Flow
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c0 c1 c2 c3

Uninterrupted gradient flow!

Input

Softm
ax

3x3 conv, 64

7x7 conv, 64 / 2

FC
 1000

Pool

3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 128
3x3 conv, 128 / 2

3x3 conv, 128
3x3 conv, 128

3x3 conv, 128
3x3 conv, 128

...

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

Pool

Similar to 
ResNet!

In between: Highway Networks

Srivastava et al, “Highway Networks”, ICML DL Workshop 2015
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ℎ! = tanh 𝑊 ℎ!"#
𝑥!

+ 𝑏$

𝑖!
𝑓!
𝑜!
𝑔!

=

𝜎
𝜎
𝜎

tanh

𝑊 ℎ!$(
𝑥!

+ 𝑏'

𝑐! = 𝑓! ⊙ 𝑐!$( + 𝑖! ⊙𝑔!
ℎ! = 𝑜! ⊙ tanh 𝑐!

Single-Layer RNNs

93

LSTM:

time

x0 x1 x2 x3 x4 x5 x6

h0 h1 h2 h3 h4 h5 h6

y0 y1 y2 y3 y4 y5 y6
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LSTM:

%me

depth

x0 x1 x2 x3 x4 x5 x6

h2
0 h2

1 h2
2 h2

3 h2
4 h2

5 h2
6

y0 y1 y2 y3 y4 y5 y6

h1
0 h1

1 h1
2 h1

3 h1
4 h1

5 h1
6

Two-layer RNN: Pass hidden 
states from one RNN as inputs 
to another RNN

ℎ!ℓ = tanh 𝑊
ℎ!"#ℓ

ℎ!ℓ"#
+ 𝑏$ℓ

𝑖!ℓ

𝑓!ℓ

𝑜!ℓ

𝑔!ℓ

=

𝜎
𝜎
𝜎

tanh

𝑊
ℎ!$(ℓ

ℎ!ℓ$(
+ 𝑏'ℓ

𝑐!ℓ = 𝑓!ℓ⊙ 𝑐!$(ℓ + 𝑖!ℓ⊙𝑔!ℓ
ℎ!ℓ = 𝑜!ℓ⊙ tanh 𝑐!ℓ
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%me

x0 x1 x2 x3 x4 x5 x6

h2
0 h2

1 h2
2 h2

3 h2
4 h2

5 h2
6

y0 y1 y2 y3 y4 y5 y6

h1
0 h1

1 h1
2 h1

3 h1
4 h1

5 h1
6

Three-layer RNN

h3
0 h3

1 h3
2 h3

3 h3
4 h3

5 h3
6

LSTM:

ℎ!ℓ = tanh 𝑊
ℎ!"#ℓ

ℎ!ℓ"#
+ 𝑏$ℓ

𝑖!ℓ

𝑓!ℓ

𝑜!ℓ

𝑔!ℓ

=

𝜎
𝜎
𝜎

tanh

𝑊
ℎ!$(ℓ

ℎ!ℓ$(
+ 𝑏'ℓ

𝑐!ℓ = 𝑓!ℓ⊙ 𝑐!$(ℓ + 𝑖!ℓ⊙𝑔!ℓ
ℎ!ℓ = 𝑜!ℓ⊙ tanh 𝑐!ℓ
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Other RNN Variants
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Gated Recurrent Unit (GRU)
Cho et al “Learning phrase representaIons 
using RNN encoder-decoder for staIsIcal 
machine translaIon”, 2014
𝑟! = 𝜎 𝑊)-𝑥! +𝑊'-ℎ!$( + 𝑏-
𝑧! = 𝜎 𝑊).𝑥! +𝑊'.ℎ!$( + 𝑏.
=ℎ! = tanh 𝑊)'𝑥! +𝑊'' 𝑟/ ⊙ℎ!$( + 𝑏'
ℎ! = 𝑧! ⊙ℎ!$( + 1 − 𝑧! ⊙ =ℎ!
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x1

we are ea.ng

x2 x3

h1 h2 h3

bread

x4

h4

Input: Sequence x1, … xT
Output: Sequence y1, …, yT’

Sutskever et al, “Sequence to sequence learning with neural networks”, NeurIPS 2014

Encoder: ht = fW(xt, ht-1)
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x1

we are ea.ng

x2 x3

h1 h2 h3 s0

bread

x4

h4

c

Input: Sequence x1, … xT
Output: Sequence y1, …, yT’

Sutskever et al, “Sequence to sequence learning with neural networks”, NeurIPS 2014

Encoder: ht = fW(xt, ht-1)
From final hidden state predict:
Ini%al decoder state s0
Context vector c (oSen c=hT)
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x1

we are ea.ng

x2 x3

h1 h2 h3 s0

[START]

y0

y1

bread

x4

h4

estamos

c

Input: Sequence x1, … xT
Output: Sequence y1, …, yT’

Sutskever et al, “Sequence to sequence learning with neural networks”, NeurIPS 2014

Encoder: ht = fW(xt, ht-1)

Decoder: st = gU(yt-1, st-1, c)

From final hidden state predict:
Initial decoder state s0
Context vector c (often c=hT)
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x1

we are eating

x2 x3

h1 h2 h3 s0 s2

[START]

y0 y1

y1 y2

bread

x4

h4

estamos comiendo

estamos

c

Input: Sequence x1, … xT
Output: Sequence y1, …, yT’

Sutskever et al, “Sequence to sequence learning with neural networks”, NeurIPS 2014

Encoder: ht = fW(xt, ht-1)

Decoder: st = gU(yt-1, st-1, c)

From final hidden state predict:
Initial decoder state s0
Context vector c (often c=hT)
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x1

we are eating

x2 x3

h1 h2 h3 s0 s2

[START]

y0 y1

y1 y2

bread

x4

h4

estamos comiendo

pan

y2 y3

estamos comiendo

s3 s4

y3 y4

pan [STOP]

c

Input: Sequence x1, … xT
Output: Sequence y1, …, yT’

Sutskever et al, “Sequence to sequence learning with neural networks”, NeurIPS 2014

Encoder: ht = fW(xt, ht-1)

Decoder: st = gU(yt-1, st-1, c)

From final hidden state predict:
Ini%al decoder state s0
Context vector c (oSen c=hT)
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x1

we are ea.ng

x2 x3

h1 h2 h3 s0 s2

[START]

y0 y1

y1 y2

bread

x4

h4

estamos comiendo

pan

y2 y3

estamos comiendo

s3 s4

y3 y4

pan [STOP]

c

Input: Sequence x1, … xT
Output: Sequence y1, …, yT’

Sutskever et al, “Sequence to sequence learning with neural networks”, NeurIPS 2014

Encoder: ht = fW(xt, ht-1)

Decoder: st = gU(yt-1, st-1, c)

From final hidden state predict:
Initial decoder state s0
Context vector c (often c=hT)

Problem: Input sequence 
bo:lenecked through fixed-
sized vector. What if T=1000?
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x1

we are ea.ng

x2 x3

h1 h2 h3 s0 s2

[START]

y0 y1

y1 y2

bread

x4

h4

estamos comiendo

pan

y2 y3

estamos comiendo

s3 s4

y3 y4

pan [STOP]

c

Input: Sequence x1, … xT
Output: Sequence y1, …, yT’

Sutskever et al, “Sequence to sequence learning with neural networks”, NeurIPS 2014

Encoder: ht = fW(xt, ht-1)

Decoder: st = gU(yt-1, st-1, c)

From final hidden state predict:
Ini%al decoder state s0
Context vector c (oSen c=hT)

Problem: Input sequence 
bottlenecked through fixed-
sized vector. What if T=1000? Idea: use new context vector 

at each step of decoder!
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x1

we are eating

x2 x3

h1 h2 h3 s0

bread

x4

h4

Bahdanau et al, “Neural machine translaAon by jointly learning to align and translate”, ICLR 2015

Input: Sequence x1, … xT
Output: Sequence y1, …, yT’

Encoder: ht = fW(xt, ht-1)
From final hidden state: 
Ini%al decoder state s0
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x1

we are eating

x2 x3

h1 h2 h3 s0

bread

x4

h4

e11 e12 e13 e14

From final hidden state: 
Ini%al decoder state s0

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Compute (scalar) alignment scores
et,i = fatt(st-1, hi)        (fatt is an MLP)
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x1

we are eating

x2 x3

h1 h2 h3 s0

bread

x4

h4

e11 e12 e13 e14

soSmax

a11 a12 a13 a14

From final hidden state: 
Ini%al decoder state s0

Normalize alignment scores 
to get a:en%on weights
0 < at,i < 1    ∑iat,i = 1

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Compute (scalar) alignment scores
et,i = faF(st-1, hi)        (faF is an MLP)
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x1

we are eating

x2 x3

h1 h2 h3 s0

bread

x4

h4

e11 e12 e13 e14

soSmax

a11 a12 a13 a14

c1

✖

+

✖ ✖ ✖

s1

y0

y1

estamos
Normalize alignment scores 
to get a:en%on weights
0 < at,i < 1    ∑iat,i = 1

Compute context vector as linear 
combina.on of hidden states
ct = ∑iat,ihi

Use context vector in 
decoder: st = gU(yt-1, st-1, ct) 

From final hidden state: 
Ini%al decoder state s0

This is all differen%able! Do not 
supervise a:en%on weights –
backprop through everythingBahdanau et al, “Neural machine translaAon by jointly learning to align and translate”, ICLR 2015

Compute (scalar) alignment scores
et,i = fatt(st-1, hi)        (fatt is an MLP)

[START]
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x1

we are eating

x2 x3

h1 h2 h3 s0

bread

x4

h4

e11 e12 e13 e14

soSmax

a11 a12 a13 a14

c1

✖

+

✖ ✖ ✖

Intui%on: Context vector 
a^ends to the relevant 
part of the input sequence
“estamos” = “we are”
so maybe a11=a12=0.45,
a13=a14=0.05

s1

y0

y1

estamos
Normalize alignment scores 
to get a:en%on weights
0 < at,i < 1    ∑iat,i = 1

Compute context vector as linear 
combina.on of hidden states
ct = ∑iat,ihi

Use context vector in 
decoder: st = gU(yt-1, st-1, ct) 

From final hidden state: 
Ini%al decoder state s0

This is all differen%able! Do not 
supervise a:en%on weights –
backprop through everythingBahdanau et al, “Neural machine translaAon by jointly learning to align and translate”, ICLR 2015

Compute (scalar) alignment scores
et,i = faF(st-1, hi)        (faF is an MLP)

[START]
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x1

we are ea.ng

x2 x3

h1 h2 h3 s0

bread

x4

h4 s1

[START]

y0

y1

estamos

c1 c2

e21 e22 e23 e24

soSmax

a21 a22 a23 a24

✖ ✖ ✖ ✖

+

Repeat: Use s1 to compute 
new context vector c2

Bahdanau et al, “Neural machine translaAon by jointly learning to align and translate”, ICLR 2015
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x1

we are ea.ng

x2 x3

h1 h2 h3 s0

bread

x4

h4 s1

[START]

y0

y1

estamos

c1 c2

e21 e22 e23 e24

soSmax

a21 a22 a23 a24

✖ ✖ ✖ ✖

+

Repeat: Use s1 to 
compute new context 
vector c2

s2

y2

comiendo

y1

Use c2 to compute s2, y2

estamos

Bahdanau et al, “Neural machine translaAon by jointly learning to align and translate”, ICLR 2015
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x1

we are ea.ng

x2 x3

h1 h2 h3 s0

bread

x4

h4 s1

[START]

y0

y1

estamos

c1 c2

e21 e22 e23 e24

soSmax

a21 a22 a23 a24

✖ ✖ ✖ ✖

+

s2

y2

comiendo

y1

Intui%on: Context vector 
a^ends to the relevant 
part of the input sequence
“comiendo” = “ea0ng”
so maybe a21=a24=0.05,
a22=0.1, a23=0.8

estamos

Bahdanau et al, “Neural machine translaAon by jointly learning to align and translate”, ICLR 2015

Repeat: Use s1 to 
compute new context 
vector c2

Use c2 to compute s2, y2
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x1

we are ea.ng

x2 x3

h1 h2 h3 s0

bread

x4

h4 s1 s2

[START]

y0

y1 y2

estamos comiendo

panestamos comiendo

s3 s4

y3 y4

pan [STOP]

c1 y1c2 y2c3 y3c4

Bahdanau et al, “Neural machine translaAon by jointly learning to align and translate”, ICLR 2015

Use a different context vector in each %mestep of decoder
- Input sequence not bo:lenecked through single vector
- At each %mestep of decoder, context vector “looks at” 

different parts of the input sequence
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Bahdanau et al, “Neural machine translaAon by jointly learning to align and translate”, ICLR 2015

Example: English to French 
translaIon

Input: “The agreement on the 
European Economic Area was 
signed in August 1992.”

Output: “L’accord sur la zone 
économique européenne a 
été signé en août 1992.”

Visualize aienIon weights at,i
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Bahdanau et al, “Neural machine translaAon by jointly learning to align and translate”, ICLR 2015

Example: English to French 
translaIon

Input: “The agreement on the 
European Economic Area was 
signed in August 1992.”

Output: “L’accord sur la zone 
économique européenne a 
été signé en août 1992.”

Visualize aienIon weights at,i

Diagonal a)en+on means 
words correspond in order

Diagonal a)en+on means 
words correspond in order
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Bahdanau et al, “Neural machine translaAon by jointly learning to align and translate”, ICLR 2015

Example: English to French 
translaIon

Input: “The agreement on the 
European Economic Area was 
signed in August 1992.”

Output: “L’accord sur la zone 
économique européenne a 
été signé en août 1992.”

Visualize aienIon weights at,i

A)en+on figures out 
different word orders

Diagonal a)en+on means 
words correspond in order

Diagonal a)en+on means 
words correspond in order
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Bahdanau et al, “Neural machine translaAon by jointly learning to align and translate”, ICLR 2015

Example: English to French 
translaIon

Input: “The agreement on the 
European Economic Area was 
signed in August 1992.”

Output: “L’accord sur la zone 
économique européenne a 
été signé en août 1992.”

Visualize aienIon weights at,i

A)en+on figures out 
different word orders

Diagonal a)en+on means 
words correspond in order

Diagonal a)en+on means 
words correspond in order

Verb conjuga+on
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x1

we are ea.ng

x2 x3

h1 h2 h3 s0

bread

x4

h4 s1 s2

[START]

y0

y1 y2

estamos comiendo

panestamos comiendo

s3 s4

y3 y4

pan [STOP]

c1 y1c2 y2c3 y3c4

Bahdanau et al, “Neural machine translaAon by jointly learning to align and translate”, ICLR 2015

The decoder doesn’t use the fact that 
hi form an ordered sequence – it just 
treats them as an unordered set {hi}

Can use similar architecture given any 
set of input hidden vectors {hi}!



A"en%on

Source: hDp://peterbloem.nl/blog/transformers See also: ADen.on is all you need

𝒚𝒊 =,
"

𝑤#"𝒙𝒊𝒋

𝑤𝒊𝒋 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥"(𝒙#%𝒙"/√𝑑&)

𝑤𝒊𝒋 =
𝑒𝒙!

"𝒙#

∑" 𝑒
𝒙!
"𝒙#

http://peterbloem.nl/blog/transformers
https://arxiv.org/abs/1706.03762


A"en%on (with key, query and value)

Source: hDp://peterbloem.nl/blog/transformers See also: ADen.on is all you need

𝒚𝒊 =,
"

𝑤#"𝑾𝒗𝒙𝒊𝒋

𝑤𝒊𝒋 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥"( 𝑾𝒒𝒙𝒊
𝑻𝑾𝒌𝒙"/√𝑑&)

http://peterbloem.nl/blog/transformers
https://arxiv.org/abs/1706.03762
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Vaswani et al, “AKenAon is all you need”, NeurIPS 2017

x1 x2 x3 x4
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Vaswani et al, “AKenAon is all you need”, NeurIPS 2017

x1 x2 x3 x4

Self-A^en.onAll vectors interact 
with each other
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122

Vaswani et al, “AKenAon is all you need”, NeurIPS 2017

x1 x2 x3 x4

Self-A^en.on

+
All vectors interact 
with each other

Residual connecIon
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Vaswani et al, “AKenAon is all you need”, NeurIPS 2017

x1 x2 x3 x4

Self-A^en.on

Layer Normaliza.on

+

Recall Layer Normaliza,on:
Given h1, …, hN (Shape: D)
scale: 𝛾 (Shape: D)
shiR: 𝛽 (Shape: D)
𝜇i = (∑j hi,j)/D                 (scalar)
𝜎i = (∑j (hi,j - 𝜇i)2/D)1/2 (scalar)
zi = (hi - 𝜇i) / 𝜎i
yi = 𝛾 * zi + 𝛽

Ba et al, 2016

All vectors interact 
with each other

Residual connecIon
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Vaswani et al, “AKenAon is all you need”, NeurIPS 2017

x1 x2 x3 x4

Self-A^en.on

Layer Normaliza.on

+

MLP MLP MLP MLP

All vectors interact 
with each other

Residual connecIon

MLP independently 
on each vector

Recall Layer Normaliza,on:
Given h1, …, hN (Shape: D)
scale: 𝛾 (Shape: D)
shiR: 𝛽 (Shape: D)
𝜇i = (∑j hi,j)/D                 (scalar)
𝜎i = (∑j (hi,j - 𝜇i)2/D)1/2 (scalar)
zi = (hi - 𝜇i) / 𝜎i
yi = 𝛾 * zi + 𝛽

Ba et al, 2016
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Vaswani et al, “AKenAon is all you need”, NeurIPS 2017

x1 x2 x3 x4

Self-A^en.on

Layer Normaliza.on

+

MLP MLP MLP MLP

+

All vectors interact 
with each other

Residual connecIon

MLP independently 
on each vector

Residual connecIon
Recall Layer Normaliza,on:
Given h1, …, hN (Shape: D)
scale: 𝛾 (Shape: D)
shiR: 𝛽 (Shape: D)
𝜇i = (∑j hi,j)/D                 (scalar)
𝜎i = (∑j (hi,j - 𝜇i)2/D)1/2 (scalar)
zi = (hi - 𝜇i) / 𝜎i
yi = 𝛾 * zi + 𝛽

Ba et al, 2016
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Vaswani et al, “AKenAon is all you need”, NeurIPS 2017

x1 x2 x3 x4

Self-A^en.on

Layer Normaliza.on

+

MLP MLP MLP MLP

+

Layer Normaliza.on

y1 y2 y3 y4

All vectors interact 
with each other

Residual connecIon

MLP independently 
on each vector

Residual connecIon
Recall Layer Normaliza,on:
Given h1, …, hN (Shape: D)
scale: 𝛾 (Shape: D)
shiR: 𝛽 (Shape: D)
𝜇i = (∑j hi,j)/D                 (scalar)
𝜎i = (∑j (hi,j - 𝜇i)2/D)1/2 (scalar)
zi = (hi - 𝜇i) / 𝜎i
yi = 𝛾 * zi + 𝛽

Ba et al, 2016
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Vaswani et al, “AKenAon is all you need”, NeurIPS 2017

x1 x2 x3 x4

Self-A^en.on

Layer Normaliza.on

+

MLP MLP MLP MLP

+

Layer Normaliza.on

y1 y2 y3 y4

Transformer Block:
Input: Set of vectors x
Output: Set of vectors y

Self-aienIon is the only 
interacIon between vectors!

Layer norm and MLP work 
independently per vector

Highly scalable, highly 
parallelizable
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Vaswani et al, “AKenAon is all you need”, NeurIPS 2017

x1 x2 x3 x4

Self-A^en.on

Layer Normaliza.on

+

MLP MLP MLP MLP

+

Layer Normaliza.on

y1 y2 y3 y4

Layer normaliza9on is 
a:er residual connec7ons
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Baevski & Auli, “AdapAve Input RepresentaAons for Neural Language Modeling”, arXiv 2018

x1 x2 x3 x4

Self-A^en.on

Layer Normaliza.on

+

MLP MLP MLP MLP

+

Layer Normaliza.on

y1 y2 y3 y4

Layer normaliza9on is 
inside residual connec7ons

Gives more stable training, 
commonly used in prac7ce
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Vaswani et al, “AKenAon is all you need”, NeurIPS 2017

Self-Attention

Layer	Normalization

+

MLP MLP MLP MLP

+
Layer	Normalization

Self-Attention

Layer	Normalization

+

MLP MLP MLP MLP

+
Layer	Normalization

Self-Attention

Layer	Normalization

+

MLP MLP MLP MLP

+
Layer	Normalization

A Transformer is a sequence 
of transformer blocks

Vaswani et al:
12 blocks, DQ=512, 6 heads

Transformer Block:
Input: Set of vectors x
Output: Set of vectors y

Self-aienIon is the only 
interacIon between vectors!

Layer norm and MLP work 
independently per vector

Highly scalable, highly 
parallelizable
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“ImageNet Moment for Natural Language Processing”

Pretraining:
Download a lot of text from the internet

Train a giant Transformer model for language modeling

Finetuning:
Fine-tune the Transformer on your own NLP task

Devlin et al, "BERT: Pre-training of Deep BidirecAonal Transformers for Language Understanding", EMNLP 2018
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+
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Self-Attention

Layer	Normalization

+

MLP MLP MLP MLP

+
Layer	Normalization
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Devlin et al, "BERT: Pre-training of Deep BidirecAonal Transformers for Language Understanding", EMNLP 2018



The Transformer: Transfer Learning

134

Devlin et al, "BERT: Pre-training of Deep BidirecAonal Transformers for Language Understanding", EMNLP 2018


