
Sequence Modeling (RNNs)

Slides from Jus.n Johnson

Slide from Jus.n Johnson

So far: “Feedforward” Neural Networks

2

e.g. Image classifica,on
Image -> Label

Slide from Jus.n Johnson

Recurrent Neural Networks: Process Sequences

3

e.g. Image Cap,oning:
Image -> sequence of words

Slide from Jus.n Johnson

Recurrent Neural Networks: Process Sequences

4

e.g. Video classification:
Sequence of images -> label

Slide from Jus.n Johnson

Recurrent Neural Networks: Process Sequences

5

e.g. Machine Translation:
Sequence of words -> Sequence of words

Slide from Jus.n Johnson

Recurrent Neural Networks: Process Sequences

6

e.g. Per-frame video classification:
Sequence of images -> Sequence of labels

Slide from Jus.n Johnson

Sequential Processing of Non-Sequential Data

7

Ba, Mnih, and Kavukcuoglu, “Mul3ple Object Recogni3on with Visual A?en3on”, ICLR 2015.
Gregor et al, “DRAW: A Recurrent Neural Network For Image Genera3on”, ICML 2015

Classify images by taking
a series of “glimpses”

Slide from Jus.n Johnson

Sequen=al Processing of Non-Sequen=al Data

8

Gregor et al, “DRAW: A Recurrent Neural Network For Image Generation”, ICML 2015

Generate images one piece at a time!

Slide from Jus.n Johnson

Recurrent Neural Networks

10

x

RNN

y

Key idea: RNNs have an
“internal state” that is
updated as a sequence
is processed

Slide from Jus.n Johnson

ℎ! = 𝑓" ℎ!#$, 𝑥!

Recurrent Neural Networks

11

x

RNN

y
We can process a sequence of vectors x by
applying a recurrence formula at every time step:

new state old state input vector at
some 2me step

some func2on
with parameters W

Slide from Justin Johnson

ℎ! = 𝑓" ℎ!#$, 𝑥!

Recurrent Neural Networks

12

x

RNN

y
We can process a sequence of vectors x by
applying a recurrence formula at every 7me step:

new state old state input vector at
some 2me step

some function
with parameters W

NoIce: the same funcIon and
the same set of parameters
are used at every Ime step.

Slide from Justin Johnson

(Vanilla) Recurrent Neural Networks

13

x

RNN

y

The state consists of a single “hidden” vector h:

Some%mes called a “Vanilla RNN” or an
“Elman RNN” a5er Prof. Jeffrey Elman

ℎ! = 𝑓" ℎ!#$, 𝑥!

ℎ! = tanh 𝑊""ℎ!#$ +𝑊%"𝑥! + 𝑏"
𝑦! = 𝑊"&ℎ! + 𝑏&

Slide from Justin Johnson

RNN Computa=onal Graph

14

h0

x1

Initial hidden state
Either set to all 0,
Or learn it

Slide from Justin Johnson

RNN Computa=onal Graph

15

h0 fW h1

x1

Slide from Justin Johnson

RNN Computational Graph

16

h0 fW h1 fW h2

x2x1

Slide from Jus.n Johnson

RNN Computa=onal Graph

17

h0 fW h1 fW h2 fW h3

x3

…

x2x1

hT

Slide from Justin Johnson

RNN Computa=onal Graph

18

h0 fW h1 fW h2 fW h3

x3

…

x2x1W

hT

Re-use the same weight matrix at every time-step

Slide from Jus.n Johnson

RNN Computa=onal Graph (Many to Many)

19

h0 fW h1 fW h2 fW h3

x3

yT

…

x2x1W

hT

y3y2y1

Slide from Justin Johnson

RNN Computa=onal Graph (Many to Many)

20

h0 fW h1 fW h2 fW h3

x3

yT

…

x2x1W

hT

y3y2y1 L1 L2 L3 LT

Slide from Justin Johnson

RNN Computa=onal Graph (Many to Many)

21

h0 fW h1 fW h2 fW h3

x3

yT

…

x2x1W

hT

y3y2y1 L1 L2 L3 LT

L

Slide from Jus.n Johnson

RNN Computational Graph (Many to One)

22

h0 fW h1 fW h2 fW h3

x3

y

…

x2x1W

hT

Slide from Justin Johnson

RNN Computational Graph (One to Many)

23

h0 fW h1 fW h2 fW h3

yT

…

x
W

hT

y3y2y1

Slide from Jus.n Johnson

Sequence to Sequence (seq2seq)
(Many to one) + (One to many)

24

h0 fW h1 fW h2 fW h3

x3

…

x2x1W1

hT

Many to one: Encode input
sequence in a single vector

Sutskever et al, “Sequence to Sequence Learning with Neural Networks”, NIPS 2014

Slide from Jus.n Johnson

Sequence to Sequence (seq2seq)
(Many to one) + (One to many)

25

h0 fW h1 fW h2 fW h3

x3

…

x2x1W1

hT

y1 y2

…

Many to one: Encode input
sequence in a single vector

One to many: Produce
output sequence from
single input vector

fW h1 fW h2 fW

W2

Sutskever et al, “Sequence to Sequence Learning with Neural Networks”, NIPS 2014

Slide from Justin Johnson

Example: Language Modeling

26

Training sequence: ”hello”

Vocabulary: [h, e, l, o]

Given characters 1, 2, …, t-1,
model predicts character t

Slide from Justin Johnson

Example: Language Modeling

27

Training sequence: ”hello”

Vocabulary: [h, e, l, o]

Given characters 1, 2, …, t-1,
model predicts character t

Slide from Justin Johnson

Example: Language Modeling

28

Training sequence: ”hello”

Vocabulary: [h, e, l, o]

Given characters 1, 2, …, t-1,
model predicts character t

Slide from Justin Johnson

Example: Language Modeling

29

Training sequence: ”hello”

Given “h”, predict “e”

Vocabulary: [h, e, l, o]

Given characters 1, 2, …, t-1,
model predicts character t

Slide from Justin Johnson

Example: Language Modeling

30

Training sequence: ”hello”

Given “he”, predict “l”

Vocabulary: [h, e, l, o]

Given characters 1, 2, …, t-1,
model predicts character t

Slide from Justin Johnson

Example: Language Modeling

31

Training sequence: ”hello”

Given “hel”, predict “l”

Vocabulary: [h, e, l, o]

Given characters 1, 2, …, t-1,
model predicts character t

Slide from Justin Johnson

Example: Language Modeling

32

Training sequence: ”hello”

Given characters 1, 2, …, t-1,
model predicts character t

Given “hell”, predict “o”

Vocabulary: [h, e, l, o]

Slide from Justin Johnson

Example: Language Modeling

33

Vocabulary: [h, e, l, o]

Training sequence: ”hello”

At test-2me, generate new
text: sample characters one
at a 2me, feed back to model

.03

.13

.00

.84
So5max

“e
”Sample

Slide from Justin Johnson

Example: Language Modeling

34

Vocabulary: [h, e, l, o]

Training sequence: ”hello”

At test-2me, generate new
text: sample characters one
at a 2me, feed back to model

.03

.13

.00

.84
So5max

“e
”Sample

Slide from Justin Johnson

Example: Language Modeling

35

Vocabulary: [h, e, l, o]

Training sequence: ”hello”

At test-2me, generate new
text: sample characters one
at a 2me, feed back to model

.03

.13

.00

.84
So5max

“e
”Sample

.25

.20

.05

.50

“l
”

Slide from Justin Johnson

Example: Language Modeling

36

Vocabulary: [h, e, l, o]

Training sequence: ”hello”

At test-2me, generate new
text: sample characters one
at a 2me, feed back to model

.03

.13

.00

.84

.25

.20

.05

.50

.11

.17

.68

.03

.11

.02

.08

.79
Softmax

“e
”

“l
”

“l
”

“o
”Sample

Slide from Justin Johnson

Example: Language Modeling

37

So far: encode inputs
as one-hot-vector

.03

.13

.00

.84

.25

.20

.05

.50

.11

.17

.68

.03

.11

.02

.08

.79
Softmax

“e
”

“l
”

“l
”

“o
”Sample

[w11 w12 w13 w14] [1] [w11]
[w21 w22 w23 w14] [0] = [w21]
[w31 w32 w33 w14] [0] [w31]

[0]
Matrix mulIply with a one-hot vector just
extracts a column from the weight matrix.
ORen extract this into a separate
embedding layer

Slide from Justin Johnson

Example: Language Modeling

38

So far: encode inputs
as one-hot-vector

[w11 w12 w13 w14] [1] [w11]
[w21 w22 w23 w14] [0] = [w21]
[w31 w32 w33 w14] [0] [w31]

[0]
Matrix mulIply with a one-hot vector just
extracts a column from the weight matrix.
ORen extract this into a separate
embedding layer

.03

.13

.00

.84

.25

.20

.05

.50

.11

.17

.68

.03

.11

.17

.68

.03

Embedding
layer

Slide from Jus.n Johnson

Backpropagation Through Time

39

Loss

Forward through en.re sequence to
compute loss, then backward through
en.re sequence to compute gradient

Slide from Jus.n Johnson

Backpropagation Through Time

40

Loss

Forward through entire sequence to
compute loss, then backward through
entire sequence to compute gradient

Problem: Takes a lot of
memory for long sequences!

Slide from Jus.n Johnson

Truncated Backpropaga=on Through Time

41

Loss

Run forward and backward
through chunks of the sequence
instead of whole sequence

Slide from Jus.n Johnson

Truncated Backpropagation Through Time

42

Loss

Carry hidden states
forward in Ime forever,
but only backpropagate
for some smaller number
of steps

Slide from Jus.n Johnson

Truncated Backpropaga=on Through Time

43

Loss

Slide from Jus.n Johnson

Example: Image Captioning

65

Figure from Karpathy et a, “Deep Visual-Seman:c Alignments
for Genera:ng Image Descrip:ons”, CVPR 2015

Mao et al, “Explain Images with Mul8modal Recurrent Neural Networks”, NeurIPS 2014 Deep Learning and Representa8on Workshop
Karpathy and Fei-Fei, “Deep Visual-Seman8c Alignments for Genera8ng Image Descrip8ons”, CVPR 2015
Vinyals et al, "Show and Tell: A Neural Image Cap8on Generator”, CVPR 2015
Donahue et al, “Long-term Recurrent Convolu8onal Networks for Visual Recogni8on and Descrip8on”, CVPR 2015
Chen and Zitnick, “Learning a Recurrent Visual Representa8on for Image Cap8on Genera8on”, CVPR 2015

Slide from Jus.n Johnson

Example: Image Cap=oning

66

Figure from Karpathy et a, “Deep Visual-Seman:c Alignments
for Genera:ng Image Descrip:ons”, CVPR 2015

Convolutional Neural Network

Recurrent
Neural
Network

Slide from Jus.n Johnson

This image is CC0 public domain

X

Transfer learning: Take
CNN trained on ImageNet,
chop off last layer

67

https://pixabay.com/en/straw-hat-man-sea-sunlight-sunset-70696/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Slide from Jus.n Johnson

This image is CC0 public domain

x0

<START>

68

https://pixabay.com/en/straw-hat-man-sea-sunlight-sunset-70696/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Slide from Jus.n Johnson

This image is CC0 public domain

h0

x0

y0

<START>Wih

Before:
ℎ! = tanh 𝑾𝒉𝒉𝒉𝒕$𝟏 +𝑾𝒙𝒉𝒙𝒕 + 𝑏'

Now:
tanh 𝑾𝒉𝒉𝒉𝒕#𝟏 +𝑾𝒙𝒉𝒙𝒕 +𝑾𝒊𝒉𝒗 + 𝑏'

69

https://pixabay.com/en/straw-hat-man-sea-sunlight-sunset-70696/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Slide from Jus.n Johnson

This image is CC0 public domain

h0

x0

y0

<START>Wih

man

man

Sample
word and
copy to
input

Before:
ℎ! = tanh 𝑾𝒉𝒉𝒉𝒕$𝟏 +𝑾𝒙𝒉𝒙𝒕 + 𝑏'

Now:
tanh 𝑾𝒉𝒉𝒉𝒕#𝟏 +𝑾𝒙𝒉𝒙𝒕 +𝑾𝒊𝒉𝒗 + 𝑏'

70

https://pixabay.com/en/straw-hat-man-sea-sunlight-sunset-70696/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Slide from Justin Johnson

This image is CC0 public domain

h0

x0

y0

<START>Wih

man

man

Sample
word and
copy to
input

x1

h1

y1

in

in

Before:
ℎ! = tanh 𝑾𝒉𝒉𝒉𝒕$𝟏 +𝑾𝒙𝒉𝒙𝒕 + 𝑏'

Now:
tanh 𝑾𝒉𝒉𝒉𝒕#𝟏 +𝑾𝒙𝒉𝒙𝒕 +𝑾𝒊𝒉𝒗 + 𝑏'

71

https://pixabay.com/en/straw-hat-man-sea-sunlight-sunset-70696/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Slide from Justin Johnson

This image is CC0 public domain

h0

x0

y0

<START>Wih

man

man

Sample
word and
copy to
input

x1

h1

y1

in

in

x2

h2

y2

str
aw

stra
w

Before:
ℎ! = tanh 𝑾𝒉𝒉𝒉𝒕$𝟏 +𝑾𝒙𝒉𝒙𝒕 + 𝑏'

Now:
tanh 𝑾𝒉𝒉𝒉𝒕#𝟏 +𝑾𝒙𝒉𝒙𝒕 +𝑾𝒊𝒉𝒗 + 𝑏'

72

https://pixabay.com/en/straw-hat-man-sea-sunlight-sunset-70696/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Slide from Jus.n Johnson

This image is CC0 public domain

h0

x0

y0

<START>Wih

man

man

Sample
word and
copy to
input

x1

h1

y1

in

in

x2

h2

y2

str
aw

stra
w

x3

h3

y3

hat

hat

Before:
ℎ! = tanh 𝑾𝒉𝒉𝒉𝒕$𝟏 +𝑾𝒙𝒉𝒙𝒕 + 𝑏'

Now:
tanh 𝑾𝒉𝒉𝒉𝒕#𝟏 +𝑾𝒙𝒉𝒙𝒕 +𝑾𝒊𝒉𝒗 + 𝑏'

73

https://pixabay.com/en/straw-hat-man-sea-sunlight-sunset-70696/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Slide from Jus.n Johnson

h0

x0

y0

<START>

x1

h1

y1

x2

h2

y2

man in str
aw

x3

h3

y3

x4

h4

y4

hat
<END>

man in stra
w hat

This image is CC0 public domain

Wih

Stop after sampling <END> token

Before:
ℎ! = tanh 𝑾𝒉𝒉𝒉𝒕$𝟏 +𝑾𝒙𝒉𝒙𝒕 + 𝑏'

Now:
tanh 𝑾𝒉𝒉𝒉𝒕#𝟏 +𝑾𝒙𝒉𝒙𝒕 +𝑾𝒊𝒉𝒗 + 𝑏'

74

https://pixabay.com/en/straw-hat-man-sea-sunlight-sunset-70696/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Slide from Justin Johnson

Image Cap=oning: Example Results

75

A cat si(ng on a suitcase
on the floor

A cat is si(ng on a tree
branch

A dog is running in the grass
with a frisbee

A white teddy bear si(ng in
the grass

Two people walking on the
beach with surfboards

Two giraffes standing in a
grassy field

A man riding a dirt bike on a
dirt track

A tennis player in ac;on on
the court

Cap:ons generated using neuraltalk2
All images are CC0 Public domain: cat
suitcase, cat tree, dog, bear, surfers,
tennis, giraffe, motorcycle

https://github.com/karpathy/neuraltalk2
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/luggage-antique-cat-1643010/
https://pixabay.com/en/luggage-antique-cat-1643010/
https://pixabay.com/en/cat-kitten-tree-green-summer-1647775/
https://pixabay.com/en/adorable-animal-canine-cute-dog-1849992/
https://pixabay.com/en/teddy-plush-bears-cute-teddy-bear-1623436/
https://pixabay.com/en/beach-beach-sports-blur-blurry-1853903/
https://pixabay.com/en/tennis-head-ramos-vinolas-clay-934841/
https://pixabay.com/en/giraffe-animals-wildlife-africa-2064520/
https://pixabay.com/en/moto-cross-motorbike-sports-jump-214928/

Slide from Jus.n Johnson

Image Captioning: Failure Cases

76

Captions generated using neuraltalk2
All images are CC0 Public domain: fur coat,
handstand, spider web, baseball

A woman is holding a cat
in her hand

A woman standing on a beach
holding a sur<oard

A person holding a computer
mouse on a desk

A bird is perched on a
tree branch

A man in a
baseball uniform
throwing a ball

https://github.com/karpathy/neuraltalk2
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/woman-female-model-portrait-adult-983967/
https://pixabay.com/en/handstand-lake-meditation-496008/
https://pixabay.com/en/spider-web-tree-branches-pattern-617769/
https://pixabay.com/en/baseball-player-shortstop-infield-1045263/

Slide from Justin Johnson

Vanilla RNN Gradient Flow

77

Bengio et al, “Learning long-term dependencies with gradient descent is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, ICML 2013

ht-1

xt

W

stack

tanh

ht

ℎ! = tanh 𝑊''ℎ!$(+𝑊)'𝑥! + 𝑏'

ℎ! = tanh 𝑊'' 𝑊')
ℎ!$(
𝑥!

+ 𝑏'

ℎ! = tanh 𝑊 ℎ!$(
𝑥!

+ 𝑏'

Slide from Justin Johnson

Vanilla RNN Gradient Flow

78

Bengio et al, “Learning long-term dependencies with gradient descent is difficult”, IEEE TransacNons on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, ICML 2013

ht-1

xt

W

stack

tanh

ht

Backpropaga%on from
ht to ht-1 mul%plies by W
(actually Whh

T)

ℎ! = tanh 𝑊''ℎ!$(+𝑊)'𝑥! + 𝑏'

ℎ! = tanh 𝑊'' 𝑊')
ℎ!$(
𝑥!

+ 𝑏'

ℎ! = tanh 𝑊 ℎ!$(
𝑥!

+ 𝑏'

Slide from Jus.n Johnson

Vanilla RNN Gradient Flow

79

h0 h1 h2 h3 h4

x1 x2 x3 x4

Computing gradient of
h0 involves many
factors of W
(and repeated tanh)

Slide from Jus.n Johnson

Vanilla RNN Gradient Flow

80

h0 h1 h2 h3 h4

x1 x2 x3 x4

Computing gradient of
h0 involves many
factors of W
(and repeated tanh)

Largest singular value > 1:
Exploding gradients

Largest singular value < 1:
Vanishing gradients

Slide from Justin Johnson

Vanilla RNN Gradient Flow

81

h0 h1 h2 h3 h4

x1 x2 x3 x4

CompuIng gradient of
h0 involves many
factors of W
(and repeated tanh)

Largest singular value > 1:
Exploding gradients

Largest singular value < 1:
Vanishing gradients

Gradient clipping: Scale
gradient if its norm is too big

Slide from Jus.n Johnson

Vanilla RNN Gradient Flow

82

h0 h1 h2 h3 h4

x1 x2 x3 x4

CompuIng gradient of
h0 involves many
factors of W
(and repeated tanh)

Largest singular value > 1:
Exploding gradients

Largest singular value < 1:
Vanishing gradients

Change RNN architecture!

Slide from Justin Johnson

Long Short Term Memory (LSTM)

83

Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation 1997

Vanilla RNN

ℎ! = tanh 𝑊 ℎ!"#
𝑥!

+ 𝑏$

Slide from Justin Johnson

Long Short Term Memory (LSTM)

84

Vanilla RNN LSTM

Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation 1997

𝑖!
𝑓!
𝑜!
𝑔!

=

𝜎
𝜎
𝜎

tanh

𝑊 ℎ!"#
𝑥!

+ 𝑏$

𝑐! = 𝑓! ⊙ 𝑐!"# + 𝑖! ⊙𝑔!
ℎ! = 𝑜! ⊙ tanh 𝑐!

ℎ! = tanh 𝑊 ℎ!"#
𝑥!

+ 𝑏$

Slide from Justin Johnson

Long Short Term Memory (LSTM)

85

Vanilla RNN LSTM

Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation 1997

𝑖!
𝑓!
𝑜!
𝑔!

=

𝜎
𝜎
𝜎

tanh

𝑊 ℎ!"#
𝑥!

+ 𝑏$

𝑐! = 𝑓! ⊙ 𝑐!"# + 𝑖! ⊙𝑔!
ℎ! = 𝑜! ⊙ tanh 𝑐!

ℎ! = tanh 𝑊 ℎ!"#
𝑥!

+ 𝑏$

Two vectors at each timestep:
Cell state: 𝑐! ∈ ℝ*

Hidden state: ℎ! ∈ ℝ*

Slide from Jus.n Johnson

Long Short Term Memory (LSTM)

86

Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation 1997

Compute four “gates” per timestep:
Input gate: i+ ∈ ℝ*

Forget gate: f+ ∈ ℝ*
Output gate: o+ ∈ ℝ*

“Gate?” gate: g+ ∈ ℝ*

Vanilla RNN LSTM
𝑖!
𝑓!
𝑜!
𝑔!

=

𝜎
𝜎
𝜎

tanh

𝑊 ℎ!"#
𝑥!

+ 𝑏$

𝑐! = 𝑓! ⊙ 𝑐!"# + 𝑖! ⊙𝑔!
ℎ! = 𝑜! ⊙ tanh 𝑐!

ℎ! = tanh 𝑊 ℎ!"#
𝑥!

+ 𝑏$

Slide from Jus.n Johnson

Long Short Term Memory (LSTM)

87

x

h

Previous
hidden
state (h)

W

i

f

o

g

Input vector (x)

sigmoid

sigmoid

tanh

sigmoid

4h x 2h 4h 4*h

i: Input gate, whether to write to cell
f: Forget gate, Whether to erase cell
o: Output gate, How much to reveal cell
g: Gate gate (?), How much to write to cell

𝑖!
𝑓!
𝑜!
𝑔!

=

𝜎
𝜎
𝜎

tanh

𝑊 ℎ!"#
𝑥!

+ 𝑏$

𝑐! = 𝑓!⊙ 𝑐!"# + 𝑖!⊙𝑔!
ℎ! = 𝑜!⊙ tanh 𝑐!

Slide from Jus.n Johnson

Long Short Term Memory (LSTM)

88

☉ct-1

ht-1

xt

f
i
g

o

W ☉

+ ct

tanh

☉ ht
stack

𝑖(
𝑓(
𝑜(
𝑔(

=

𝜎
𝜎
𝜎

tanh

𝑊 ℎ(#)
𝑥(

+ 𝑏'

𝑐(= 𝑓(⊙ 𝑐(#) + 𝑖(⊙𝑔(
ℎ(= 𝑜(⊙ tanh 𝑐(

Slide from Jus.n Johnson

Long Short Term Memory (LSTM): Gradient Flow

89

☉ct-1

ht-1

xt

f
i
g

o

W ☉

+ ct

tanh

☉ ht
stack

BackpropagaIon from ct
to ct-1 only elementwise
mulIplicaIon by f, no
matrix mulIply by W

𝑖(
𝑓(
𝑜(
𝑔(

=

𝜎
𝜎
𝜎

tanh

𝑊 ℎ(#)
𝑥(

+ 𝑏'

𝑐(= 𝑓(⊙ 𝑐(#) + 𝑖(⊙𝑔(
ℎ(= 𝑜(⊙ tanh 𝑐(

Slide from Justin Johnson

Long Short Term Memory (LSTM): Gradient Flow

90

c0 c1 c2 c3

Uninterrupted gradient flow!

Slide from Justin Johnson

Long Short Term Memory (LSTM): Gradient Flow

91

c0 c1 c2 c3

Uninterrupted gradient flow!

Input

Softm
ax

3x3 conv, 64

7x7 conv, 64 / 2

FC
 1000

Pool

3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 128
3x3 conv, 128 / 2

3x3 conv, 128
3x3 conv, 128

3x3 conv, 128
3x3 conv, 128

...

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

Pool

Similar to
ResNet!

Slide from Jus.n Johnson

𝑔(= 𝐹 𝑥,𝑊(
𝑦(= 𝑔(⊙𝐻 𝑥,𝑊' + 1 − 𝑔(⊙𝑥(

Long Short Term Memory (LSTM): Gradient Flow

92

c0 c1 c2 c3

Uninterrupted gradient flow!

Input

Softm
ax

3x3 conv, 64

7x7 conv, 64 / 2

FC
 1000

Pool

3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 128
3x3 conv, 128 / 2

3x3 conv, 128
3x3 conv, 128

3x3 conv, 128
3x3 conv, 128

...

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

Pool

Similar to
ResNet!

In between: Highway Networks

Srivastava et al, “Highway Networks”, ICML DL Workshop 2015

Slide from Jus.n Johnson

ℎ! = tanh 𝑊 ℎ!"#
𝑥!

+ 𝑏$

𝑖!
𝑓!
𝑜!
𝑔!

=

𝜎
𝜎
𝜎

tanh

𝑊 ℎ!$(
𝑥!

+ 𝑏'

𝑐! = 𝑓! ⊙ 𝑐!$(+ 𝑖! ⊙𝑔!
ℎ! = 𝑜! ⊙ tanh 𝑐!

Single-Layer RNNs

93

LSTM:

time

x0 x1 x2 x3 x4 x5 x6

h0 h1 h2 h3 h4 h5 h6

y0 y1 y2 y3 y4 y5 y6

Slide from Jus.n Johnson

Mutilayer RNNs

94

LSTM:

%me

depth

x0 x1 x2 x3 x4 x5 x6

h2
0 h2

1 h2
2 h2

3 h2
4 h2

5 h2
6

y0 y1 y2 y3 y4 y5 y6

h1
0 h1

1 h1
2 h1

3 h1
4 h1

5 h1
6

Two-layer RNN: Pass hidden
states from one RNN as inputs
to another RNN

ℎ!ℓ = tanh 𝑊
ℎ!"#ℓ

ℎ!ℓ"#
+ 𝑏$ℓ

𝑖!ℓ

𝑓!ℓ

𝑜!ℓ

𝑔!ℓ

=

𝜎
𝜎
𝜎

tanh

𝑊
ℎ!$(ℓ

ℎ!ℓ$(
+ 𝑏'ℓ

𝑐!ℓ = 𝑓!ℓ⊙ 𝑐!$(ℓ + 𝑖!ℓ⊙𝑔!ℓ
ℎ!ℓ = 𝑜!ℓ⊙ tanh 𝑐!ℓ

Slide from Justin Johnson

Mu=layer RNNs

95

%me

x0 x1 x2 x3 x4 x5 x6

h2
0 h2

1 h2
2 h2

3 h2
4 h2

5 h2
6

y0 y1 y2 y3 y4 y5 y6

h1
0 h1

1 h1
2 h1

3 h1
4 h1

5 h1
6

Three-layer RNN

h3
0 h3

1 h3
2 h3

3 h3
4 h3

5 h3
6

LSTM:

ℎ!ℓ = tanh 𝑊
ℎ!"#ℓ

ℎ!ℓ"#
+ 𝑏$ℓ

𝑖!ℓ

𝑓!ℓ

𝑜!ℓ

𝑔!ℓ

=

𝜎
𝜎
𝜎

tanh

𝑊
ℎ!$(ℓ

ℎ!ℓ$(
+ 𝑏'ℓ

𝑐!ℓ = 𝑓!ℓ⊙ 𝑐!$(ℓ + 𝑖!ℓ⊙𝑔!ℓ
ℎ!ℓ = 𝑜!ℓ⊙ tanh 𝑐!ℓ

Slide from Jus.n Johnson

Other RNN Variants

96

Gated Recurrent Unit (GRU)
Cho et al “Learning phrase representaIons
using RNN encoder-decoder for staIsIcal
machine translaIon”, 2014
𝑟! = 𝜎 𝑊)-𝑥! +𝑊'-ℎ!$(+ 𝑏-
𝑧! = 𝜎 𝑊).𝑥! +𝑊'.ℎ!$(+ 𝑏.
=ℎ! = tanh 𝑊)'𝑥! +𝑊'' 𝑟/ ⊙ℎ!$(+ 𝑏'
ℎ! = 𝑧! ⊙ℎ!$(+ 1 − 𝑧! ⊙ =ℎ!

Slide from Jus.n Johnson

Sequence-to-Sequence with RNNs

97

x1

we are ea.ng

x2 x3

h1 h2 h3

bread

x4

h4

Input: Sequence x1, … xT
Output: Sequence y1, …, yT’

Sutskever et al, “Sequence to sequence learning with neural networks”, NeurIPS 2014

Encoder: ht = fW(xt, ht-1)

Slide from Jus.n Johnson

Sequence-to-Sequence with RNNs

98

x1

we are ea.ng

x2 x3

h1 h2 h3 s0

bread

x4

h4

c

Input: Sequence x1, … xT
Output: Sequence y1, …, yT’

Sutskever et al, “Sequence to sequence learning with neural networks”, NeurIPS 2014

Encoder: ht = fW(xt, ht-1)
From final hidden state predict:
Ini%al decoder state s0
Context vector c (oSen c=hT)

Slide from Jus.n Johnson

s1

Sequence-to-Sequence with RNNs

99

x1

we are ea.ng

x2 x3

h1 h2 h3 s0

[START]

y0

y1

bread

x4

h4

estamos

c

Input: Sequence x1, … xT
Output: Sequence y1, …, yT’

Sutskever et al, “Sequence to sequence learning with neural networks”, NeurIPS 2014

Encoder: ht = fW(xt, ht-1)

Decoder: st = gU(yt-1, st-1, c)

From final hidden state predict:
Initial decoder state s0
Context vector c (often c=hT)

Slide from Jus.n Johnson

s1

Sequence-to-Sequence with RNNs

100

x1

we are eating

x2 x3

h1 h2 h3 s0 s2

[START]

y0 y1

y1 y2

bread

x4

h4

estamos comiendo

estamos

c

Input: Sequence x1, … xT
Output: Sequence y1, …, yT’

Sutskever et al, “Sequence to sequence learning with neural networks”, NeurIPS 2014

Encoder: ht = fW(xt, ht-1)

Decoder: st = gU(yt-1, st-1, c)

From final hidden state predict:
Initial decoder state s0
Context vector c (often c=hT)

Slide from Jus.n Johnson

s1

Sequence-to-Sequence with RNNs

101

x1

we are eating

x2 x3

h1 h2 h3 s0 s2

[START]

y0 y1

y1 y2

bread

x4

h4

estamos comiendo

pan

y2 y3

estamos comiendo

s3 s4

y3 y4

pan [STOP]

c

Input: Sequence x1, … xT
Output: Sequence y1, …, yT’

Sutskever et al, “Sequence to sequence learning with neural networks”, NeurIPS 2014

Encoder: ht = fW(xt, ht-1)

Decoder: st = gU(yt-1, st-1, c)

From final hidden state predict:
Ini%al decoder state s0
Context vector c (oSen c=hT)

Slide from Justin Johnson

s1

Sequence-to-Sequence with RNNs

102

x1

we are ea.ng

x2 x3

h1 h2 h3 s0 s2

[START]

y0 y1

y1 y2

bread

x4

h4

estamos comiendo

pan

y2 y3

estamos comiendo

s3 s4

y3 y4

pan [STOP]

c

Input: Sequence x1, … xT
Output: Sequence y1, …, yT’

Sutskever et al, “Sequence to sequence learning with neural networks”, NeurIPS 2014

Encoder: ht = fW(xt, ht-1)

Decoder: st = gU(yt-1, st-1, c)

From final hidden state predict:
Initial decoder state s0
Context vector c (often c=hT)

Problem: Input sequence
bo:lenecked through fixed-
sized vector. What if T=1000?

Slide from Jus.n Johnson

s1

Sequence-to-Sequence with RNNs

103

x1

we are ea.ng

x2 x3

h1 h2 h3 s0 s2

[START]

y0 y1

y1 y2

bread

x4

h4

estamos comiendo

pan

y2 y3

estamos comiendo

s3 s4

y3 y4

pan [STOP]

c

Input: Sequence x1, … xT
Output: Sequence y1, …, yT’

Sutskever et al, “Sequence to sequence learning with neural networks”, NeurIPS 2014

Encoder: ht = fW(xt, ht-1)

Decoder: st = gU(yt-1, st-1, c)

From final hidden state predict:
Ini%al decoder state s0
Context vector c (oSen c=hT)

Problem: Input sequence
bottlenecked through fixed-
sized vector. What if T=1000? Idea: use new context vector

at each step of decoder!

Slide from Jus.n Johnson

Sequence-to-Sequence with RNNs and Attention

104

x1

we are eating

x2 x3

h1 h2 h3 s0

bread

x4

h4

Bahdanau et al, “Neural machine translaAon by jointly learning to align and translate”, ICLR 2015

Input: Sequence x1, … xT
Output: Sequence y1, …, yT’

Encoder: ht = fW(xt, ht-1)
From final hidden state:
Ini%al decoder state s0

Slide from Jus.n Johnson

Sequence-to-Sequence with RNNs and ARen=on

105

x1

we are eating

x2 x3

h1 h2 h3 s0

bread

x4

h4

e11 e12 e13 e14

From final hidden state:
Ini%al decoder state s0

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Compute (scalar) alignment scores
et,i = fatt(st-1, hi) (fatt is an MLP)

Slide from Jus.n Johnson

Sequence-to-Sequence with RNNs and ARen=on

106

x1

we are eating

x2 x3

h1 h2 h3 s0

bread

x4

h4

e11 e12 e13 e14

soSmax

a11 a12 a13 a14

From final hidden state:
Ini%al decoder state s0

Normalize alignment scores
to get a:en%on weights
0 < at,i < 1 ∑iat,i = 1

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Compute (scalar) alignment scores
et,i = faF(st-1, hi) (faF is an MLP)

Slide from Jus.n Johnson

Sequence-to-Sequence with RNNs and Attention

107

x1

we are eating

x2 x3

h1 h2 h3 s0

bread

x4

h4

e11 e12 e13 e14

soSmax

a11 a12 a13 a14

c1

✖

+

✖ ✖ ✖

s1

y0

y1

estamos
Normalize alignment scores
to get a:en%on weights
0 < at,i < 1 ∑iat,i = 1

Compute context vector as linear
combina.on of hidden states
ct = ∑iat,ihi

Use context vector in
decoder: st = gU(yt-1, st-1, ct)

From final hidden state:
Ini%al decoder state s0

This is all differen%able! Do not
supervise a:en%on weights –
backprop through everythingBahdanau et al, “Neural machine translaAon by jointly learning to align and translate”, ICLR 2015

Compute (scalar) alignment scores
et,i = fatt(st-1, hi) (fatt is an MLP)

[START]

Slide from Jus.n Johnson

Sequence-to-Sequence with RNNs and ARen=on

108

x1

we are eating

x2 x3

h1 h2 h3 s0

bread

x4

h4

e11 e12 e13 e14

soSmax

a11 a12 a13 a14

c1

✖

+

✖ ✖ ✖

Intui%on: Context vector
a^ends to the relevant
part of the input sequence
“estamos” = “we are”
so maybe a11=a12=0.45,
a13=a14=0.05

s1

y0

y1

estamos
Normalize alignment scores
to get a:en%on weights
0 < at,i < 1 ∑iat,i = 1

Compute context vector as linear
combina.on of hidden states
ct = ∑iat,ihi

Use context vector in
decoder: st = gU(yt-1, st-1, ct)

From final hidden state:
Ini%al decoder state s0

This is all differen%able! Do not
supervise a:en%on weights –
backprop through everythingBahdanau et al, “Neural machine translaAon by jointly learning to align and translate”, ICLR 2015

Compute (scalar) alignment scores
et,i = faF(st-1, hi) (faF is an MLP)

[START]

Slide from Jus.n Johnson

Sequence-to-Sequence with RNNs

109

x1

we are ea.ng

x2 x3

h1 h2 h3 s0

bread

x4

h4 s1

[START]

y0

y1

estamos

c1 c2

e21 e22 e23 e24

soSmax

a21 a22 a23 a24

✖ ✖ ✖ ✖

+

Repeat: Use s1 to compute
new context vector c2

Bahdanau et al, “Neural machine translaAon by jointly learning to align and translate”, ICLR 2015

Slide from Jus.n Johnson

Sequence-to-Sequence with RNNs and ARen=on

110

x1

we are ea.ng

x2 x3

h1 h2 h3 s0

bread

x4

h4 s1

[START]

y0

y1

estamos

c1 c2

e21 e22 e23 e24

soSmax

a21 a22 a23 a24

✖ ✖ ✖ ✖

+

Repeat: Use s1 to
compute new context
vector c2

s2

y2

comiendo

y1

Use c2 to compute s2, y2

estamos

Bahdanau et al, “Neural machine translaAon by jointly learning to align and translate”, ICLR 2015

Slide from Jus.n Johnson

Sequence-to-Sequence with RNNs and ARen=on

111

x1

we are ea.ng

x2 x3

h1 h2 h3 s0

bread

x4

h4 s1

[START]

y0

y1

estamos

c1 c2

e21 e22 e23 e24

soSmax

a21 a22 a23 a24

✖ ✖ ✖ ✖

+

s2

y2

comiendo

y1

Intui%on: Context vector
a^ends to the relevant
part of the input sequence
“comiendo” = “ea0ng”
so maybe a21=a24=0.05,
a22=0.1, a23=0.8

estamos

Bahdanau et al, “Neural machine translaAon by jointly learning to align and translate”, ICLR 2015

Repeat: Use s1 to
compute new context
vector c2

Use c2 to compute s2, y2

Slide from Jus.n Johnson

Sequence-to-Sequence with RNNs and ARen=on

112

x1

we are ea.ng

x2 x3

h1 h2 h3 s0

bread

x4

h4 s1 s2

[START]

y0

y1 y2

estamos comiendo

panestamos comiendo

s3 s4

y3 y4

pan [STOP]

c1 y1c2 y2c3 y3c4

Bahdanau et al, “Neural machine translaAon by jointly learning to align and translate”, ICLR 2015

Use a different context vector in each %mestep of decoder
- Input sequence not bo:lenecked through single vector
- At each %mestep of decoder, context vector “looks at”

different parts of the input sequence

Slide from Jus.n Johnson

Sequence-to-Sequence with RNNs and ARen=on

113

Bahdanau et al, “Neural machine translaAon by jointly learning to align and translate”, ICLR 2015

Example: English to French
translaIon

Input: “The agreement on the
European Economic Area was
signed in August 1992.”

Output: “L’accord sur la zone
économique européenne a
été signé en août 1992.”

Visualize aienIon weights at,i

Slide from Jus.n Johnson

Sequence-to-Sequence with RNNs and ARen=on

114

Bahdanau et al, “Neural machine translaAon by jointly learning to align and translate”, ICLR 2015

Example: English to French
translaIon

Input: “The agreement on the
European Economic Area was
signed in August 1992.”

Output: “L’accord sur la zone
économique européenne a
été signé en août 1992.”

Visualize aienIon weights at,i

Diagonal a)en+on means
words correspond in order

Diagonal a)en+on means
words correspond in order

Slide from Jus.n Johnson

Sequence-to-Sequence with RNNs and ARen=on

115

Bahdanau et al, “Neural machine translaAon by jointly learning to align and translate”, ICLR 2015

Example: English to French
translaIon

Input: “The agreement on the
European Economic Area was
signed in August 1992.”

Output: “L’accord sur la zone
économique européenne a
été signé en août 1992.”

Visualize aienIon weights at,i

A)en+on figures out
different word orders

Diagonal a)en+on means
words correspond in order

Diagonal a)en+on means
words correspond in order

Slide from Jus.n Johnson

Sequence-to-Sequence with RNNs and ARen=on

116

Bahdanau et al, “Neural machine translaAon by jointly learning to align and translate”, ICLR 2015

Example: English to French
translaIon

Input: “The agreement on the
European Economic Area was
signed in August 1992.”

Output: “L’accord sur la zone
économique européenne a
été signé en août 1992.”

Visualize aienIon weights at,i

A)en+on figures out
different word orders

Diagonal a)en+on means
words correspond in order

Diagonal a)en+on means
words correspond in order

Verb conjuga+on

Slide from Jus.n Johnson

Sequence-to-Sequence with RNNs and ARen=on

117

x1

we are ea.ng

x2 x3

h1 h2 h3 s0

bread

x4

h4 s1 s2

[START]

y0

y1 y2

estamos comiendo

panestamos comiendo

s3 s4

y3 y4

pan [STOP]

c1 y1c2 y2c3 y3c4

Bahdanau et al, “Neural machine translaAon by jointly learning to align and translate”, ICLR 2015

The decoder doesn’t use the fact that
hi form an ordered sequence – it just
treats them as an unordered set {hi}

Can use similar architecture given any
set of input hidden vectors {hi}!

A"en%on

Source: hDp://peterbloem.nl/blog/transformers See also: ADen.on is all you need

𝒚𝒊 =,
"

𝑤#"𝒙𝒊𝒋

𝑤𝒊𝒋 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥"(𝒙#%𝒙"/√𝑑&)

𝑤𝒊𝒋 =
𝑒𝒙!

"𝒙#

∑" 𝑒
𝒙!
"𝒙#

http://peterbloem.nl/blog/transformers
https://arxiv.org/abs/1706.03762

A"en%on (with key, query and value)

Source: hDp://peterbloem.nl/blog/transformers See also: ADen.on is all you need

𝒚𝒊 =,
"

𝑤#"𝑾𝒗𝒙𝒊𝒋

𝑤𝒊𝒋 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥"(𝑾𝒒𝒙𝒊
𝑻𝑾𝒌𝒙"/√𝑑&)

http://peterbloem.nl/blog/transformers
https://arxiv.org/abs/1706.03762

Slide from Jus.n Johnson

The Transformer

120

Vaswani et al, “AKenAon is all you need”, NeurIPS 2017

x1 x2 x3 x4

Slide from Jus.n Johnson

The Transformer

121

Vaswani et al, “AKenAon is all you need”, NeurIPS 2017

x1 x2 x3 x4

Self-A^en.onAll vectors interact
with each other

Slide from Jus.n Johnson

The Transformer

122

Vaswani et al, “AKenAon is all you need”, NeurIPS 2017

x1 x2 x3 x4

Self-A^en.on

+
All vectors interact
with each other

Residual connecIon

Slide from Jus.n Johnson

The Transformer

123

Vaswani et al, “AKenAon is all you need”, NeurIPS 2017

x1 x2 x3 x4

Self-A^en.on

Layer Normaliza.on

+

Recall Layer Normaliza,on:
Given h1, …, hN (Shape: D)
scale: 𝛾 (Shape: D)
shiR: 𝛽 (Shape: D)
𝜇i = (∑j hi,j)/D (scalar)
𝜎i = (∑j (hi,j - 𝜇i)2/D)1/2 (scalar)
zi = (hi - 𝜇i) / 𝜎i
yi = 𝛾 * zi + 𝛽

Ba et al, 2016

All vectors interact
with each other

Residual connecIon

Slide from Jus.n Johnson

The Transformer

124

Vaswani et al, “AKenAon is all you need”, NeurIPS 2017

x1 x2 x3 x4

Self-A^en.on

Layer Normaliza.on

+

MLP MLP MLP MLP

All vectors interact
with each other

Residual connecIon

MLP independently
on each vector

Recall Layer Normaliza,on:
Given h1, …, hN (Shape: D)
scale: 𝛾 (Shape: D)
shiR: 𝛽 (Shape: D)
𝜇i = (∑j hi,j)/D (scalar)
𝜎i = (∑j (hi,j - 𝜇i)2/D)1/2 (scalar)
zi = (hi - 𝜇i) / 𝜎i
yi = 𝛾 * zi + 𝛽

Ba et al, 2016

Slide from Jus.n Johnson

The Transformer

125

Vaswani et al, “AKenAon is all you need”, NeurIPS 2017

x1 x2 x3 x4

Self-A^en.on

Layer Normaliza.on

+

MLP MLP MLP MLP

+

All vectors interact
with each other

Residual connecIon

MLP independently
on each vector

Residual connecIon
Recall Layer Normaliza,on:
Given h1, …, hN (Shape: D)
scale: 𝛾 (Shape: D)
shiR: 𝛽 (Shape: D)
𝜇i = (∑j hi,j)/D (scalar)
𝜎i = (∑j (hi,j - 𝜇i)2/D)1/2 (scalar)
zi = (hi - 𝜇i) / 𝜎i
yi = 𝛾 * zi + 𝛽

Ba et al, 2016

Slide from Jus.n Johnson

The Transformer

126

Vaswani et al, “AKenAon is all you need”, NeurIPS 2017

x1 x2 x3 x4

Self-A^en.on

Layer Normaliza.on

+

MLP MLP MLP MLP

+

Layer Normaliza.on

y1 y2 y3 y4

All vectors interact
with each other

Residual connecIon

MLP independently
on each vector

Residual connecIon
Recall Layer Normaliza,on:
Given h1, …, hN (Shape: D)
scale: 𝛾 (Shape: D)
shiR: 𝛽 (Shape: D)
𝜇i = (∑j hi,j)/D (scalar)
𝜎i = (∑j (hi,j - 𝜇i)2/D)1/2 (scalar)
zi = (hi - 𝜇i) / 𝜎i
yi = 𝛾 * zi + 𝛽

Ba et al, 2016

Slide from Jus.n Johnson

The Transformer

127

Vaswani et al, “AKenAon is all you need”, NeurIPS 2017

x1 x2 x3 x4

Self-A^en.on

Layer Normaliza.on

+

MLP MLP MLP MLP

+

Layer Normaliza.on

y1 y2 y3 y4

Transformer Block:
Input: Set of vectors x
Output: Set of vectors y

Self-aienIon is the only
interacIon between vectors!

Layer norm and MLP work
independently per vector

Highly scalable, highly
parallelizable

Slide from Jus.n Johnson

Post-Norm Transformer

128

Vaswani et al, “AKenAon is all you need”, NeurIPS 2017

x1 x2 x3 x4

Self-A^en.on

Layer Normaliza.on

+

MLP MLP MLP MLP

+

Layer Normaliza.on

y1 y2 y3 y4

Layer normaliza9on is
a:er residual connec7ons

Slide from Jus.n Johnson

Pre-Norm Transformer

129

Baevski & Auli, “AdapAve Input RepresentaAons for Neural Language Modeling”, arXiv 2018

x1 x2 x3 x4

Self-A^en.on

Layer Normaliza.on

+

MLP MLP MLP MLP

+

Layer Normaliza.on

y1 y2 y3 y4

Layer normaliza9on is
inside residual connec7ons

Gives more stable training,
commonly used in prac7ce

Slide from Jus.n Johnson

The Transformer

130

Vaswani et al, “AKenAon is all you need”, NeurIPS 2017

Self-Attention

Layer	Normalization

+

MLP MLP MLP MLP

+
Layer	Normalization

Self-Attention

Layer	Normalization

+

MLP MLP MLP MLP

+
Layer	Normalization

Self-Attention

Layer	Normalization

+

MLP MLP MLP MLP

+
Layer	Normalization

A Transformer is a sequence
of transformer blocks

Vaswani et al:
12 blocks, DQ=512, 6 heads

Transformer Block:
Input: Set of vectors x
Output: Set of vectors y

Self-aienIon is the only
interacIon between vectors!

Layer norm and MLP work
independently per vector

Highly scalable, highly
parallelizable

The Transformer

131

Vaswani et al, “AKenAon is all you need”, NeurIPS 2017

Slide from Jus.n Johnson

The Transformer: Transfer Learning

132

“ImageNet Moment for Natural Language Processing”

Pretraining:
Download a lot of text from the internet

Train a giant Transformer model for language modeling

Finetuning:
Fine-tune the Transformer on your own NLP task

Devlin et al, "BERT: Pre-training of Deep BidirecAonal Transformers for Language Understanding", EMNLP 2018

Self-Attention

Layer	Normalization

+

MLP MLP MLP MLP

+
Layer	Normalization

Self-Attention

Layer	Normalization

+

MLP MLP MLP MLP

+
Layer	Normalization

Self-Attention

Layer	Normalization

+

MLP MLP MLP MLP

+
Layer	Normalization

The Transformer: Transfer Learning

133

Devlin et al, "BERT: Pre-training of Deep BidirecAonal Transformers for Language Understanding", EMNLP 2018

The Transformer: Transfer Learning

134

Devlin et al, "BERT: Pre-training of Deep BidirecAonal Transformers for Language Understanding", EMNLP 2018

