Sequence Modeling (RNNs)

So far: "Feedforward" Neural Networks

one to one

e.g. Image classification Image -> Label

Recurrent Neural Networks: Process Sequences

one to one

one to many

e.g. Image Captioning:

Image -> sequence of words

Recurrent Neural Networks: Process Sequences

Recurrent Neural Networks: Process Sequences

many to one

e.g. Machine Translation:

Sequence of words -> Sequence of words

Recurrent Neural Networks: Process Sequences

many to one

e.g. Per-frame video classification:

Sequence of images -> Sequence of labels

Sequential Processing of Non-Sequential Data

Classify images by taking a series of "glimpses"

2	3	8	2	9	1	1	7	1	8
3	3	2	8	6	9	6	5	1	3
8	8	1	8	1	6	9	8	3	4
7	0	2	7	6	0	9	1	4	5
7	4	4	4	4	4	4	4	7	9
3	1	8	9	3	4	2	7	7	3
6	6	1	6	3	7	3	3	9	0
8	1	0	5	7	5	7	8	3	4
9	9	1	1	3	0	5	9	5	4
1	7	8	6	0	8	3	2	1	0

Sequential Processing of Non-Sequential Data

Generate images one piece at a time!

$3{ }^{3}$									
00	0	0	\bigcirc	10			0	,	
02	\square	0	\square	12		3	1		
30	\square	\square	5	L	3	3	3		
03	0	\bigcirc	\square		3	3		,	
00	-	3	5	30		3	3	,	
02	0	3	\bigcirc	30		3	3	,	
03	0	3				3		1	
08	0	3	12	3		3			

Recurrent Neural Networks

Recurrent Neural Networks

We can process a sequence of vectors \mathbf{x} by applying a recurrence formula at every time step:

Recurrent Neural Networks

Notice: the same function and the same set of parameters are used at every time step.

We can process a sequence of vectors \mathbf{x} by applying a recurrence formula at every time step:

(Vanilla) Recurrent Neural Networks

The state consists of a single "hidden" vector \mathbf{h} :

$$
h_{t}=f_{W}\left(h_{t-1}, x_{t}\right)
$$

$$
\begin{aligned}
& h_{t}=\tanh \left(W_{h h} h_{t-1}+W_{x h} x_{t}+b_{h}\right) \\
& y_{t}=W_{h y} h_{t}+b_{y}
\end{aligned}
$$

Sometimes called a "Vanilla RNN" or an "Elman RNN" after Prof. Jeffrey Elman

RNN Computational Graph

Initial hidden state
Either set to all 0, Or learn it

RNN Computational Graph

RNN Computational Graph

RNN Computational Graph

RNN Computational Graph

Re-use the same weight matrix at every time-step

RNN Computational Graph (Many to Many)

RNN Computational Graph (Many to Many)

RNN Computational Graph (Many to Many)

RNN Computational Graph (Many to One)

RNN Computational Graph (One to Many)

Sequence to Sequence (seq2seq) (Many to one) + (One to many)

Many to one: Encode input sequence in a single vector

Sequence to Sequence (seq2seq) (Many to one) + (One to many)

One to many: Produce output sequence from single input vector

Many to one: Encode input sequence in a single vector

Example: Language Modeling

Given characters $1,2, \ldots, t-1$, model predicts character t

Training sequence: "hello"
Vocabulary: [h, e, I, o]

Example: Language Modeling

Given characters 1, 2, ..., t-1, model predicts character t
$h_{t}=\tanh \left(W_{h h} h_{t-1}+W_{x h} x_{t}\right)$

Training sequence: "hello"
Vocabulary: [h, e, l, o]

Example: Language Modeling

Given characters $1,2, \ldots, t-1$, model predicts character t

$$
h_{t}=\tanh \left(W_{h h} h_{t-1}+W_{x h} x_{t}\right)
$$

Training sequence: "hello"
Vocabulary: [h, e, I, o]

Given characters 1, 2, ..., t-1, model predicts character t

$$
h_{t}=\tanh \left(W_{h h} h_{t-1}+W_{x h} x_{t}\right)
$$

Training sequence: "hello"
Vocabulary: [h, e, l, o]

Given "he", predict "l"

Given characters $1,2, \ldots, t-1$, model predicts character t

$$
h_{t}=\tanh \left(W_{h h} h_{t-1}+W_{x h} x_{t}\right)
$$

Training sequence: "hello"
Vocabulary: [h, e, l, o]

Given "hel", predict " 1 "

Given "hell", predict " o "

Given characters 1, 2, ..., t-1, model predicts character t

$$
h_{t}=\tanh \left(W_{h h} h_{t-1}+W_{x h} x_{t}\right)
$$

Training sequence: "hello"
Vocabulary: [h, e, l, o]

Example: Language Modeling

At test-time, generate new text: sample characters one at a time, feed back to model

Training sequence: "hello"
Vocabulary: [h, e, I, o]

Example: Language Modeling

At test-time, generate new text: sample characters one at a time, feed back to model

Training sequence: "hello"
Vocabulary: [h, e, I, o]

Example: Language Modeling

At test-time, generate new text: sample characters one at a time, feed back to model

Training sequence: "hello"
Vocabulary: [h, e, I, o]

Example: Language Modeling

At test-time, generate new text: sample characters one at a time, feed back to model

Training sequence: "hello"
Vocabulary: [h, e, I, o]

$$
\left[w_{21} w_{22} w_{23} w_{14}\right][0]=\left[w_{21}\right]
$$

$$
\left[\begin{array}{llll}
w_{31} & w_{32} & w_{33} & w_{14}
\end{array}\right][0] \quad\left[w_{31}\right]
$$

[0]

Matrix multiply with a one-hot vector just extracts a column from the weight matrix. Often extract this into a separate embedding layer

Sample

output layer

Example: Language Modeling

So far: encode inputs as one-hot-vector

$$
\begin{aligned}
& \text { [} \left.w_{11} w_{12} w_{13} w_{14}\right][1] \quad\left[w_{11}\right] \\
& {\left[w_{21} w_{22} w_{23} w_{14}\right][0]=\left[w_{21}\right]} \\
& {\left[w_{31} w_{32} w_{33} w_{14}\right][0] \quad\left[w_{31}\right]} \\
& \text { [0] }
\end{aligned}
$$

Matrix multiply with a one-hot vector just extracts a column from the weight matrix. Often extract this into a separate embedding layer

Backpropagation Through Time

Forward through entire sequence to compute loss, then backward through entire sequence to compute gradient

Backpropagation Through Time

Forward through entire sequence to compute loss, then backward through entire sequence to compute gradient

Truncated Backpropagation Through Time

Run forward and backward through chunks of the sequence instead of whole sequence

Truncated Backpropagation Through Time

Carry hidden states forward in time forever, but only backpropagate for some smaller number of steps

Truncated Backpropagation Through Time

Example: Image Captioning

Mao et al, "Explain Images with Multimodal Recurrent Neural Networks", NeurIPS 2014 Deep Learning and Representation Workshop Karpathy and Fei-Fei, "Deep Visual-Semantic Alignments for Generating Image Descriptions", CVPR 2015
Vinyals et al, "Show and Tell: A Neural Image Caption Generator", CVPR 2015
Donahue et al, "Long-term Recurrent Convolutional Networks for Visual Recognition and Description", CVPR 2015
Chen and Zitnick, "Learning a Recurrent Visual Representation for Image Caption Generation", CVPR 2015

Figure from Karpathy et a, "Deep Visual-Semantic Alignment for Generating Image Descriptions", CVPR 2015

Example: Image Captioning

Recurrent Neural Network

Convolutional Neural Network

conv-64
maxpool
conv-128
conv-128
maxpool
conv-256
conv-256
maxpool
conv-512
conv-512
maxpool
conv-512
conv-512
maxpool
FC-4096
FC-4096
FC-1090
Transfer learning: Take CNN trained on ImageNet, chop off last layer
image
conv-64
conv-64
maxpool
conv-128
conv-128
maxpool
conv-256
conv-256
maxpool
conv-512
conv-512
maxpool
conv-512
conv-512
maxpool
FC-4096
FC-4096

Stop after sampling <END> token

Image Captioning: Example Results

A cat sitting on a suitcase on the floor

Two people walking on the beach with surfboards

A cat is sitting on a tree branch

A tennis player in action on the court

A dog is running in the grass with a frisbee

Two giraffes standing in a grassy field

A white teddy bear sitting in the grass

A man riding a dirt bike on a dirt track

Image Captioning: Failure Cases

A woman is holding a cat in her hand

A person holding a computer mouse on a desk

A woman standing on a beach holding a surfboard

A man in a baseball uniform throwing a ball

Vanilla RNN Gradient Flow

$$
\begin{aligned}
h_{t} & =\tanh \left(W_{h h} h_{t-1}+W_{x h} x_{t}+b_{h}\right) \\
& =\tanh \left(\left(\begin{array}{ll}
W_{h h} & \left.\left.W_{h x}\right)\binom{h_{t-1}}{x_{t}}+b_{h}\right) \\
& =\tanh \left(W\binom{h_{t-1}}{x_{t}}+b_{h}\right)
\end{array},=\right.\right.\text {. }
\end{aligned}
$$

Vanilla RNN Gradient Flow

Backpropagation from
h_{t} to h_{t-1} multiplies by W
(actually $W_{h h}{ }^{\top}$)

$$
\begin{aligned}
h_{t} & =\tanh \left(W_{h h} h_{t-1}+W_{x h} x_{t}+b_{h}\right) \\
& =\tanh \left(\left(\begin{array}{ll}
W_{h h} & \left.\left.W_{h x}\right)\binom{h_{t-1}}{x_{t}}+b_{h}\right) \\
& =\tanh \left(W\binom{h_{t-1}}{x_{t}}+b_{h}\right)
\end{array},=\right.\right.\text {. }
\end{aligned}
$$

Vanilla RNN Gradient Flow

Computing gradient of
h_{0} involves many factors of W (and repeated tanh)

Vanilla RNN Gradient Flow

Computing gradient of h_{0} involves many factors of W (and repeated tanh)

Largest singular value >1:

Exploding gradients

Largest singular value <1 :
Vanishing gradients

Vanilla RNN Gradient Flow

Computing gradient of h_{0} involves many factors of W (and repeated tanh)

Largest singular value >1 : Exploding gradients

Largest singular value <1 :
Vanishing gradients

Gradient clipping: Scale gradient if its norm is too big

```
grad_norm = np.sum(grad * grad)
if grad_norm > threshold:
    grad *= (threshold / grad_norm)
```


Vanilla RNN Gradient Flow

Computing gradient of h_{0} involves many factors of W (and repeated tanh)

Largest singular value >1:

Exploding gradients

Largest singular value <1 : Vanishing gradients

Long Short Term Memory (LSTM)

Vanilla RNN

$$
h_{t}=\tanh \left(W\binom{h_{t-1}}{x_{t}}+b_{h}\right)
$$

Long Short Term Memory (LSTM)

Vanilla RNN

LSTM

$$
h_{t}=\tanh \left(W\binom{h_{t-1}}{x_{t}}+b_{h}\right)
$$

$$
\begin{aligned}
& \left(\begin{array}{l}
i_{t} \\
f_{t} \\
o_{t} \\
g_{t}
\end{array}\right)=\left(\begin{array}{c}
\sigma \\
\sigma \\
\sigma \\
\tanh
\end{array}\right)\left(W\binom{h_{t-1}}{x_{t}}+b_{h}\right) \\
& c_{t}=f_{t} \odot c_{t-1}+i_{t} \odot g_{t} \\
& h_{t}=o_{t} \odot \tanh \left(c_{t}\right)
\end{aligned}
$$

Long Short Term Memory (LSTM)

Vanilla RNN

LSTM

$$
h_{t}=\tanh \left(W\binom{h_{t-1}}{x_{t}}+b_{h}\right)
$$

Two vectors at each timestep: Cell state: $c_{t} \in \mathbb{R}^{H}$ Hidden state: $h_{t} \in \mathbb{R}^{H}$
$\left(\begin{array}{l}i_{t} \\ f_{t} \\ o_{t} \\ g_{t}\end{array}\right)=\left(\begin{array}{c}\sigma \\ \sigma \\ \sigma \\ \tanh \end{array}\right)\left(W\binom{h_{t-1}}{x_{t}}+b_{h}\right)$
$c_{t}=f_{t} \odot c_{t-1}+i_{t} \odot g_{t}$
$h_{t}=o_{t} \odot \tanh \left(c_{t}\right)$

Long Short Term Memory (LSTM)

Vanilla RNN

LSTM

$$
h_{t}=\tanh \left(W\binom{h_{t-1}}{x_{t}}+b_{h}\right)
$$

Compute four "gates" per timestep: Input gate: $\mathrm{i}_{\mathrm{t}} \in \mathbb{R}^{H}$ Forget gate: $\mathrm{f}_{\mathrm{t}} \in \mathbb{R}^{H}$ Output gate: $\mathrm{o}_{\mathrm{t}} \in \mathbb{R}^{H}$
$\left(\begin{array}{l}i_{t} \\ f_{t} \\ o_{t} \\ g_{t}\end{array}\right)=\left(\begin{array}{c}\sigma \\ \sigma \\ \sigma \\ \tanh \end{array}\right)\left(W\binom{h_{t-1}}{x_{t}}+b_{h}\right)$
$c_{t}=f_{t} \odot c_{t-1}+i_{t} \odot g_{t}$
$h_{t}=o_{t} \odot \tanh \left(c_{t}\right)$ "Gate?" gate: $\mathrm{g}_{\mathrm{t}} \in \mathbb{R}^{H}$

Long Short Term Memory (LSTM)

Input vector (x)

$4 h \times 2 h$

4h

Long Short Term Memory (LSTM)

Long Short Term Memory (LSTM): Gradient Flow

Long Short Term Memory (LSTM): Gradient Flow
 Uninterrupted gradient flow!

Long Short Term Memory (LSTM): Gradient Flow

Uninterrupted gradient flow!

Slide from Justin Johnson

Long Short Term Memory (LSTM): Gradient Flow
 Uninterrupted gradient flow!

In between: Highway Networks

$$
\begin{aligned}
& g_{t}=F\left(x, W_{t}\right) \\
& y_{t}=g_{t} \odot H\left(x, W_{h}\right)+\left(1-g_{t}\right) \odot x_{t}
\end{aligned}
$$

Single-Layer RNNs

$$
h_{t}=\tanh \left(W\binom{h_{t-1}}{x_{t}}+b_{h}\right)
$$

LSTM:

$$
\begin{aligned}
& \left(\begin{array}{l}
i_{t} \\
f_{t} \\
o_{t} \\
g_{t}
\end{array}\right)=\left(\begin{array}{c}
\sigma \\
\sigma \\
\sigma \\
\tanh
\end{array}\right)\left(W\binom{h_{t-1}}{x_{t}}+b_{h}\right) \\
& c_{t}=f_{t} \odot c_{t-1}+i_{t} \odot g_{t} \\
& h_{t}=o_{t} \odot \tanh \left(c_{t}\right)
\end{aligned}
$$

Mutilayer RNNs

$$
h_{t}^{\ell}=\tanh \left(W\binom{h_{t-1}^{\ell}}{h_{t}^{\ell-1}}+b_{h}^{\ell}\right)
$$

LSTM:

$$
\begin{aligned}
& \left(\begin{array}{c}
i_{t}^{\ell} \\
f_{t}^{\ell} \\
o_{t}^{\ell} \\
g_{t}^{\ell}
\end{array}\right)=\left(\begin{array}{c}
\sigma \\
\sigma \\
\sigma \\
\tanh
\end{array}\right)\left(W\binom{h_{t-1}^{\ell}}{h_{t}^{\ell-1}}+b_{h}^{\ell}\right) \\
& c_{t}^{\ell}=f_{t}^{\ell} \odot c_{t-1}^{\ell}+i_{t}^{\ell} \odot g_{t}^{\ell} \\
& h_{t}^{\ell}=o_{t}^{\ell} \odot \tanh \left(c_{t}^{\ell}\right)
\end{aligned}
$$

Two-layer RNN: Pass hidden states from one RNN as inputs to another RNN

Three-layer RNN

Mutilayer RNNs

$$
h_{t}^{\ell}=\tanh \left(W\binom{h_{t-1}^{\ell}}{h_{t}^{\ell-1}}+b_{h}^{\ell}\right)
$$

LSTM:

$$
\begin{aligned}
& \left(\begin{array}{c}
i_{t}^{\ell} \\
f_{t}^{\ell} \\
o_{t}^{\ell} \\
g_{t}^{\ell}
\end{array}\right)=\left(\begin{array}{c}
\sigma \\
\sigma \\
\sigma \\
\tanh
\end{array}\right)\left(W\binom{h_{t-1}^{\ell}}{h_{t}^{\ell-1}}+b_{h}^{\ell}\right) \\
& c_{t}^{\ell}=f_{t}^{\ell} \odot c_{t-1}^{\ell}+i_{t}^{\ell} \odot g_{t}^{\ell} \\
& h_{t}^{\ell}=o_{t}^{\ell} \odot \tanh \left(c_{t}^{\ell}\right)
\end{aligned}
$$

Other RNN Variants

Gated Recurrent Unit (GRU)

Cho et al "Learning phrase representations using RNN encoder-decoder for statistical machine translation", 2014

$$
\begin{aligned}
& r_{t}=\sigma\left(W_{x r} x_{t}+W_{h r} h_{t-1}+b_{r}\right) \\
& z_{t}=\sigma\left(W_{x z} x_{t}+W_{h z} h_{t-1}+b_{z}\right) \\
& \tilde{h}_{t}=\tanh \left(W_{x h} x_{t}+W_{h h}\left(r_{T} \odot h_{t-1}\right)+b_{h}\right) \\
& h_{t}=z_{t} \odot h_{t-1}+\left(1-z_{t}\right) \odot \tilde{h}_{t}
\end{aligned}
$$

Sequence-to-Sequence with RNNs

Input: Sequence $x_{1}, \ldots x_{T}$
Output: Sequence $y_{1}, \ldots, y_{T^{\prime}}$

Encoder: $h_{t}=f_{w}\left(x_{t}, h_{t-1}\right)$

Sequence-to-Sequence with RNNs

Input: Sequence $x_{1}, \ldots x_{T}$
Output: Sequence $y_{1}, \ldots, y_{T^{\prime}}$

From final hidden state predict:
Encoder: $h_{t}=f_{w}\left(x_{t}, h_{t-1}\right) \quad \begin{aligned} & \text { Initial decoder state } s_{0} \\ & \text { Context vector } c\left(\text { often } c=h_{T}\right)\end{aligned}$

Sequence-to-Sequence with RNNs

Input: Sequence $x_{1}, \ldots x_{T}$
Decoder: $s_{t}=g_{u}\left(y_{t-1}, s_{t-1}, c\right)$
Output: Sequence $y_{1}, \ldots, y_{T^{\prime}}$
estamos

Sequence-to-Sequence with RNNs

Input: Sequence $x_{1}, \ldots x_{T}$
Decoder: $s_{t}=g_{u}\left(y_{t-1}, s_{t-1}, c\right)$
Output: Sequence $y_{1}, \ldots, y_{T^{\prime}}$
estamos comiendo

Sequence-to-Sequence with RNNs

Input: Sequence $x_{1}, \ldots x_{T}$
Decoder: $\mathrm{s}_{\mathrm{t}}=\mathrm{g}_{\mathrm{u}}\left(\mathrm{y}_{\mathrm{t}-1}, \mathrm{~s}_{\mathrm{t}-1}, \mathrm{c}\right)$
Output: Sequence $\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{T}^{\prime}}$
estamos comiendo pan [STOP]

Sequence-to-Sequence with RNNs

Input: Sequence $x_{1}, \ldots x_{T}$
Decoder: $s_{t}=g_{u}\left(y_{t-1}, s_{t-1}, c\right)$
Output: Sequence $\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{T}^{\prime}}$
estamos comiendo pan [STOP]

[^0]
Sequence-to-Sequence with RNNs

Input: Sequence $x_{1}, \ldots x_{T}$
Decoder: $\mathrm{s}_{\mathrm{t}}=\mathrm{g}_{\mathrm{u}}\left(\mathrm{y}_{\mathrm{t}-1}, \mathrm{~s}_{\mathrm{t}-1}, \mathrm{c}\right)$
Output: Sequence $\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{T}^{\prime}}$
estamos comiendo pan [STOP]

Sequence-to-Sequence with RNNs and Attention

Input: Sequence $x_{1}, \ldots x_{T}$
Output: Sequence $y_{1}, \ldots, y_{T^{\prime}}$

Encoder: $h_{t}=f_{w}\left(x_{t}, h_{t-1}\right) \quad \begin{aligned} & \text { From final hidden state: } \\ & \text { Initial decoder state } s_{0}\end{aligned}$

Sequence-to-Sequence with RNNs and Attention

$$
\begin{aligned}
& \text { Compute (scalar) alignment scores } \\
& e_{t, i}=f_{a t t}\left(s_{t-1}, h_{i}\right) \quad\left(f_{a t t}\right. \text { is an MLP) }
\end{aligned}
$$

Sequence-to-Sequence with RNNs and Attention

Compute (scalar) alignment scores

$$
e_{t, i}=f_{a t t}\left(s_{t-1}, h_{i}\right) \quad\left(f_{a t t}\right. \text { is an MLP) }
$$

Normalize alignment scores to get attention weights

$$
0<a_{t, i}<1 \quad \sum_{i} a_{t, i}=1
$$

Sequence-to-Sequence with RNNs and Attention

Bahdanau et al, "Neural machine translation by jointly learning to align and translate", ICLR 2015

Compute (scalar) alignment scores
$e_{t, i}=f_{a t t}\left(s_{t-1}, h_{i}\right) \quad\left(f_{\text {att }}\right.$ is an MLP)
estamos

[START]

Sequence-to-Sequence with RNNs and Attention

estamos

[START]

$$
a_{13}=a_{14}=0.05
$$

Bahdanau et al, "Neural machine translation by jointly learning to align and translate", ICLR 2015

Compute (scalar) alignment scores
$e_{t, i}=f_{\text {att }}\left(s_{t-1}, h_{i}\right) \quad\left(f_{\text {att }}\right.$ is an MLP)

Normalize alignment scores to get attention weights

$$
0<a_{t, i}<1 \quad \sum_{i} a_{t, i}=1
$$

Compute context vector as linear combination of hidden states
$c_{t}=\sum_{i} \mathrm{a}_{\mathrm{t}, \mathrm{h}} \mathrm{h}_{\mathrm{i}}$
Use context vector in decoder: $s_{t}=g_{u}\left(y_{t-1}, s_{t-1}, c_{t}\right)$

This is all differentiable! Do not supervise attention weights backprop through everything

Sequence-to-Sequence with RNNs and Attention

Sequence-to-Sequence with RNNs and Attention

Bahdanau et al, "Neural machine translation by jointly learning to align and translate", ICLR 2015
Slide from Justin Johnson

Sequence-to-Sequence with RNNs and Attention

Use a different context vector in each timestep of decoder

- Input sequence not bottlenecked through single vector
- At each timestep of decoder, context vector "looks at" different parts of the input sequence

Bahdanau et al, "Neural machine translation by jointly learning to align and translate", ICLR 2015

Sequence-to-Sequence with RNNs and Attention

Example: English to French translation

Input: "The agreement on the European Economic Area was signed in August 1992."

Output: "L’accord sur la zone économique européenne a été signé en août 1992."

Visualize attention weights $\mathrm{a}_{\mathrm{t}, \mathrm{i}}$

Sequence-to-Sequence with RNNs and Attention

Example: English to French translation

Input: "The agreement on the European Economic Area was signed in August 1992."

Output: "L’accord sur la zone économique européenne a été signé en août 1992."

Diagonal attention means words correspond in order

Diagonal attention means words correspond in order

Sequence-to-Sequence with RNNs and Attention

Example: English to French translation

Input: "The agreement on the European Economic Area was signed in August 1992."

Output: "L’accord sur la zone économique européenne a été signé en août 1992."
Diagonal attention means
words correspond in order

Visualize attention weights $\mathrm{a}_{\mathrm{t}, \mathrm{i}}$

Attention figures out different word orders

Sequence-to-Sequence with RNNs and Attention

Example: English to French translation

Input: "The agreement on the European Economic Area was signed in August 1992."

Output: "L'accord sur la zone économique européenne a été signé en août 1992."

Visualize attention weights $\mathrm{a}_{\mathrm{t}, \mathrm{i}}$
Diagonal attention means
words correspond in order
Attention figures out different word orders
Verb conjugation
Diagonal attention means words correspond in order

Sequence-to-Sequence with RNNs and Attention

The decoder doesn't use the fact that h_{i} form an ordered sequence - it just treats them as an unordered set $\left\{h_{i}\right\}$
estamos comiendo
[STOP]
Can use similar architecture given any set of input hidden vectors $\left\{h_{i}\right\}$!

pan

Attention

Source: http://peterbloem.nl/blog/transformers See also: Attention is all you need

Attention (with key, query and value)

The Transformer

The Transformer

All vectors interact with each other

The Transformer

The Transformer

Recall Layer Normalization:
Given $h_{1}, \ldots, h_{N} \quad$ (Shape: D)
scale: γ
(Shape: D)
shift: β
$\mu_{\mathrm{i}}=\left(\sum_{\mathrm{j}} \mathrm{h}_{\mathrm{i}, \mathrm{j}}\right) / \mathrm{D}$ (Shape: D)
(scalar)
$\sigma_{\mathrm{i}}=\left(\sum_{\mathrm{j}}\left(\mathrm{h}_{\mathrm{i}, \mathrm{j}}-\mu_{\mathrm{i}}\right)^{2} / \mathrm{D}\right)^{1 / 2}$ (scalar)
$\mathrm{z}_{\mathrm{i}}=\left(\mathrm{h}_{\mathrm{i}}-\mu_{\mathrm{i}}\right) / \sigma_{\mathrm{i}}$
$\mathrm{y}_{\mathrm{i}}=\gamma^{*} \mathrm{z}_{\mathrm{i}}+\beta$

Ba et al, 2016

The Transformer

Recall Layer Normalization:

Given $h_{1}, \ldots, h_{N} \quad$ (Shape: D)
scale: γ
shift: β
$\mu_{\mathrm{i}}=\left(\sum_{\mathrm{j}} \mathrm{h}_{\mathrm{i}, \mathrm{j}}\right) / \mathrm{D}$
(Shape: D)
(Shape: D) (scalar)
$\sigma_{\mathrm{i}}=\left(\sum_{\mathrm{j}}\left(\mathrm{h}_{\mathrm{i}, \mathrm{j}}-\mu_{\mathrm{i}}\right)^{2} / \mathrm{D}\right)^{1 / 2}$ (scalar)
$\mathrm{z}_{\mathrm{i}}=\left(\mathrm{h}_{\mathrm{i}}-\mu_{\mathrm{i}}\right) / \sigma_{\mathrm{i}}$
$\mathrm{y}_{\mathrm{i}}=\gamma^{*} \mathrm{z}_{\mathrm{i}}+\beta$

Ba et al, 2016

The Transformer

Recall Layer Normalization:

Given $\mathrm{h}_{1}, \ldots, \mathrm{~h}_{\mathrm{N}}$ (Shape: D) scale: γ
shift: β
$\mu_{\mathrm{i}}=\left(\sum_{\mathrm{j}} \mathrm{h}_{\mathrm{i}, \mathrm{j}}\right) / \mathrm{D}$
(Shape: D)
(Shape: D) (scalar)
$\sigma_{\mathrm{i}}=\left(\sum_{\mathrm{j}}\left(\mathrm{h}_{\mathrm{i}, \mathrm{j}}-\mu_{\mathrm{i}}\right)^{2} / \mathrm{D}\right)^{1 / 2}$ (scalar)
$\mathrm{z}_{\mathrm{i}}=\left(\mathrm{h}_{\mathrm{i}}-\mu_{\mathrm{i}}\right) / \sigma_{\mathrm{i}}$
$\mathrm{y}_{\mathrm{i}}=\gamma^{*} \mathrm{z}_{\mathrm{i}}+\beta$

Ba et al, 2016

The Transformer

Recall Layer Normalization:

Given h_{1}, \ldots, h_{N} (Shape: D) scale: γ
shift: β
$\mu_{\mathrm{i}}=\left(\sum_{\mathrm{j}} \mathrm{h}_{\mathrm{i}, \mathrm{j}}\right) / \mathrm{D}$
(Shape: D)
(Shape: D) (scalar)
$\sigma_{\mathrm{i}}=\left(\sum_{\mathrm{j}}\left(\mathrm{h}_{\mathrm{i}, \mathrm{j}}-\mu_{\mathrm{i}}\right)^{2} / \mathrm{D}\right)^{1 / 2}$ (scalar)
$\mathrm{z}_{\mathrm{i}}=\left(\mathrm{h}_{\mathrm{i}}-\mu_{\mathrm{i}}\right) / \sigma_{\mathrm{i}}$
$\mathrm{y}_{\mathrm{i}}=\gamma^{*} \mathrm{z}_{\mathrm{i}}+\beta$

Ba et al, 2016

Slide from Justin Johnson

Residual connection
MLP independently on each vector

The Transformer

Transformer Block:
Input: Set of vectors x Output: Set of vectors y

Self-attention is the only interaction between vectors!

Layer norm and MLP work independently per vector

Highly scalable, highly parallelizable

Post-Norm Transformer

Layer normalization is after residual connections

Pre-Norm Transformer

Layer normalization is

 inside residual connectionsGives more stable training, commonly used in practice

The Transformer

Transformer Block:

Input: Set of vectors x Output: Set of vectors y

A Transformer is a sequence of transformer blocks

Vaswani et al:
12 blocks, $D_{0}=512,6$ heads

The Transformer

Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

| Model | BLEU | | | Training Cost (FLOPs) | |
| :--- | :---: | :---: | :--- | :---: | :---: | :---: |
| | EN-DE | EN-FR | | EN-DE | EN-FR |
| ByteNet [18] | 23.75 | | | | |
| Deep-Att + PosUnk [39] | | 39.2 | | | $1.0 \cdot 10^{20}$ |
| GNMT + RL [38] | 24.6 | 39.92 | | $2.3 \cdot 10^{19}$ | $1.4 \cdot 10^{20}$ |
| ConvS2S [9] | 25.16 | 40.46 | | $9.6 \cdot 10^{18}$ | $1.5 \cdot 10^{20}$ |
| MoE [32] | 26.03 | 40.56 | | $2.0 \cdot 10^{19}$ | $1.2 \cdot 10^{20}$ |
| Deep-Att + PosUnk Ensemble [39] | | 40.4 | | | $8.0 \cdot 10^{20}$ |
| GNMT + RL Ensemble [38] | 26.30 | 41.16 | | $1.8 \cdot 10^{20}$ | $1.1 \cdot 10^{21}$ |
| ConvS2S Ensemble [9] | 26.36 | $\mathbf{4 1 . 2 9}$ | | $7.7 \cdot 10^{19}$ | $1.2 \cdot 10^{21}$ |
| Transformer (base model) | 27.3 | 38.1 | | $\mathbf{3 . 3} \cdot \mathbf{1 0}^{\mathbf{1 8}}$ | |
| Transformer (big) | $\mathbf{2 8 . 4}$ | $\mathbf{4 1 . 8}$ | | $2.3 \cdot 10^{19}$ | |

The Transformer: Transfer Learning

"ImageNet Moment for Natural Language Processing"

Pretraining:

Download a lot of text from the internet
Train a giant Transformer model for language modeling

Finetuning:

Fine-tune the Transformer on your own NLP task

The Transformer: Transfer Learning

The Transformer: Transfer Learning

System	MNLI- $(\mathrm{m} / \mathrm{mm})$	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392 k	363 k	108 k	67 k	8.5 k	5.7 k	3.5 k	2.5 k	-
Pre-OpenAI SOTA	$80.6 / 80.1$	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	$76.4 / 76.1$	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT $^{\text {BERT }_{\text {BASE }}}$	$82.1 / 81.4$	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERT $_{\text {LARGE }}$	$84.6 / 83.4$	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6

Table 1: GLUE Test results, scored by the evaluation server (https://gluebenchmark.com/leaderboard). The number below each task denotes the number of training examples. The "Average" column is slightly different than the official GLUE score, since we exclude the problematic WNLI set. ${ }^{8}$ BERT and OpenAI GPT are singlemodel, single task. F1 scores are reported for QQP and MRPC, Spearman correlations are reported for STS-B, and accuracy scores are reported for the other tasks. We exclude entries that use BERT as one of their components.

[^0]: Sutskever et al, "Sequence to sequence learning with neural networks", NeurIPS 2014

