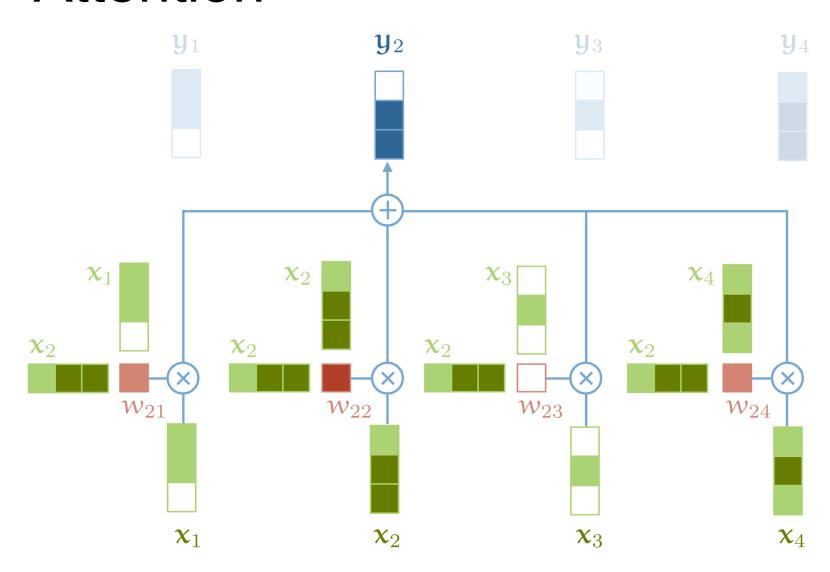
Vision Transformers

Saurabh Gupta

Overview

- Vision Transformers
- Finetuning Vision Transformers
- Multiscale Vision Transformers
- Transformers for Detection

Attention



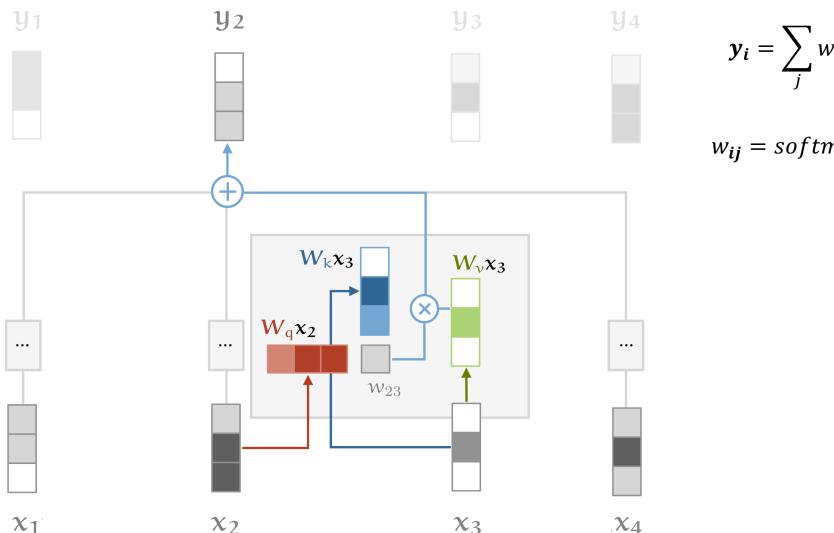
$$y_{i} = \sum_{j} w_{ij} x_{ij}$$

$$w_{ij} = softmax_{j} (x_{i}^{T} x_{j} / \sqrt{d_{k}})$$

$$w_{ij} = \frac{e^{x_{i}^{T} x_{j}}}{\sum_{i} e^{x_{i}^{T} x_{j}}}$$

Source: http://peterbloem.nl/blog/transformers See also: Attention is all you need

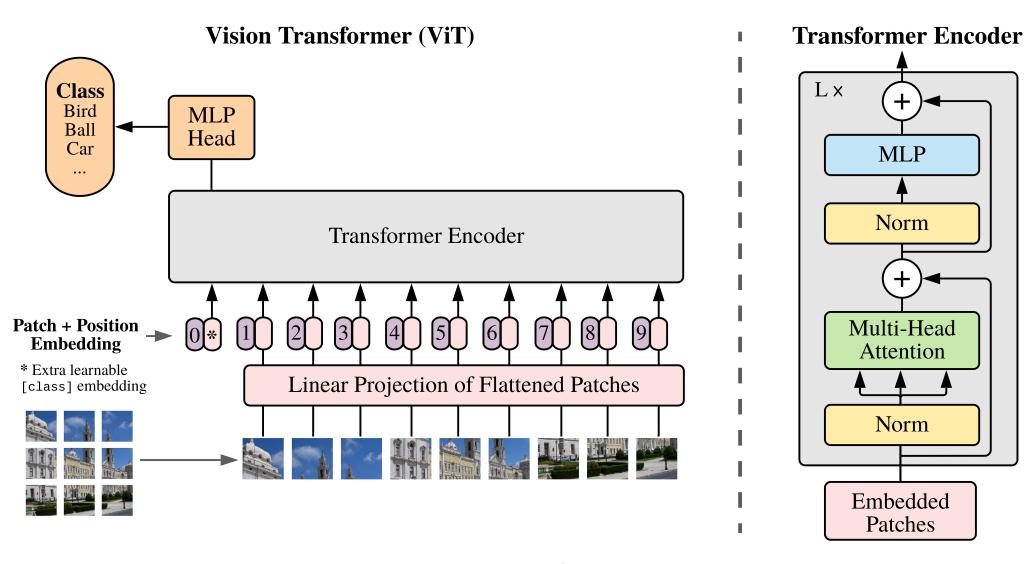
Attention (with key, query and value)



$$\mathbf{y_i} = \sum_{j} w_{ij} \mathbf{W_v} \mathbf{x_{ij}}$$

$$w_{ij} = softmax_{j} ((\mathbf{W}_{q} \mathbf{x}_{i})^{T} \mathbf{W}_{k} \mathbf{x}_{j} / \sqrt{d_{k}})$$

Source: http://peterbloem.nl/blog/transformers See also: Attention is all you need



$$\mathbf{z}_0 = [\mathbf{x}_{\mathrm{class}}; \ \mathbf{x}_p^1 \mathbf{E}; \ \mathbf{x}_p^2 \mathbf{E}; \cdots; \ \mathbf{x}_p^N \mathbf{E}] + \mathbf{E}_{pos}, \qquad \mathbf{E} \in \mathbb{R}^{(P^2 \cdot C) \times D}, \ \mathbf{E}_{pos} \in \mathbb{R}^{(N+1) \times D}$$
 $\mathbf{z}'_{\ell} = \mathrm{MSA}(\mathrm{LN}(\mathbf{z}_{\ell-1})) + \mathbf{z}_{\ell-1}, \qquad \qquad \ell = 1 \dots L$
 $\mathbf{z}_{\ell} = \mathrm{MLP}(\mathrm{LN}(\mathbf{z}'_{\ell})) + \mathbf{z}'_{\ell}, \qquad \qquad \ell = 1 \dots L$
 $\mathbf{y} = \mathrm{LN}(\mathbf{z}_L^0)$

An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale, Dosovitskiy ICLR 2021

Multihead Self-Attention

A MULTIHEAD SELF-ATTENTION

Standard \mathbf{qkv} self-attention (SA, Vaswani et al. (2017)) is a popular building block for neural architectures. For each element in an input sequence $\mathbf{z} \in \mathbb{R}^{N \times D}$, we compute a weighted sum over all values \mathbf{v} in the sequence. The attention weights A_{ij} are based on the pairwise similarity between two elements of the sequence and their respective query \mathbf{q}^i and key \mathbf{k}^j representations.

$$[\mathbf{q}, \mathbf{k}, \mathbf{v}] = \mathbf{z} \mathbf{U}_{qkv} \qquad \qquad \mathbf{U}_{qkv} \in \mathbb{R}^{D \times 3D_h}, \tag{5}$$

$$A = \operatorname{softmax}\left(\mathbf{q}\mathbf{k}^{\top}/\sqrt{D_h}\right) \qquad A \in \mathbb{R}^{N \times N}, \tag{6}$$

$$SA(\mathbf{z}) = A\mathbf{v}. \tag{7}$$

Multihead self-attention (MSA) is an extension of SA in which we run k self-attention operations, called "heads", in parallel, and project their concatenated outputs. To keep compute and number of parameters constant when changing k, D_h (Eq. 5) is typically set to D/k.

$$MSA(\mathbf{z}) = [SA_1(z); SA_2(z); \dots; SA_k(z)] \mathbf{U}_{msa} \qquad \mathbf{U}_{msa} \in \mathbb{R}^{k \cdot D_h \times D}$$
(8)

Other Details

- MLP: 1 hidden layer with GELU nonlinearity
- Layer Norm: Normalize representation for each token to be normalized to zero mean, unit variance
- Learn a **Positional Embedding** for patch locations: $W_{pos}l_{onehot}$

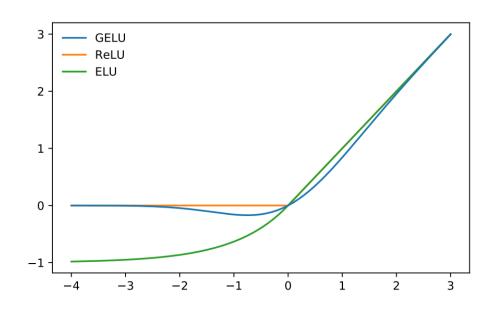


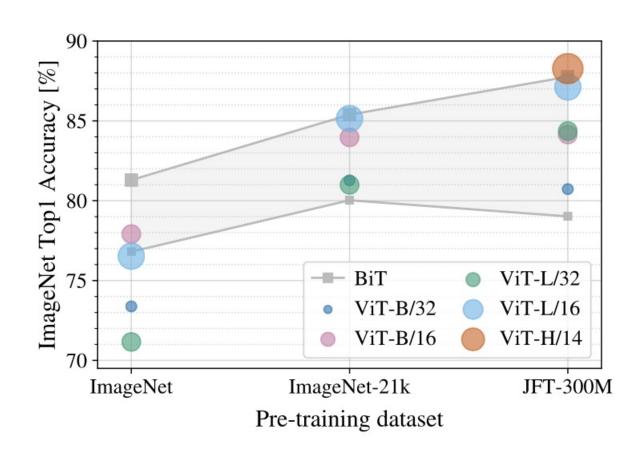
Figure 1: The GELU ($\mu=0,\sigma=1$), ReLU, and ELU ($\alpha=1$).

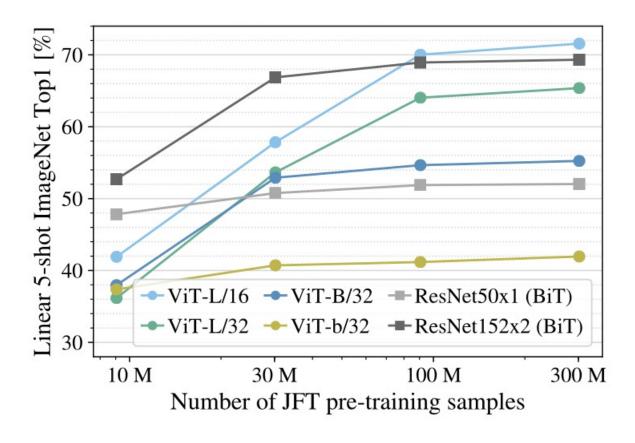
Model	Layers	Hidden size D	MLP size	Heads	Params
ViT-Base	12	768	3072	12	86M
ViT-Large	24	1024	4096	16	307M
ViT-Huge	32	1280	5120	16	632M

Results

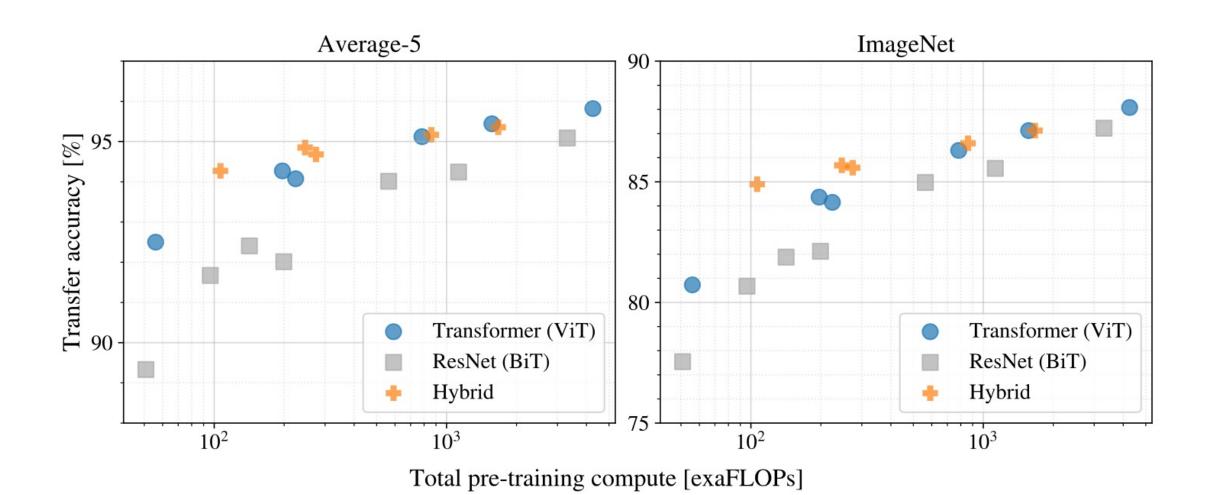
	Ours-JFT (ViT-H/14)	Ours-JFT (ViT-L/16)	Ours-I21k (ViT-L/16)	BiT-L (ResNet152x4)	Noisy Student (EfficientNet-L2)
ImageNet	88.55 ± 0.04	87.76 ± 0.03	85.30 ± 0.02	87.54 ± 0.02	88.4/88.5*
ImageNet ReaL	90.72 ± 0.05	90.54 ± 0.03	88.62 ± 0.05	90.54	90.55
CIFAR-10	99.50 ± 0.06	99.42 ± 0.03	99.15 ± 0.03	99.37 ± 0.06	_
CIFAR-100	94.55 ± 0.04	93.90 ± 0.05	93.25 ± 0.05	93.51 ± 0.08	_
Oxford-IIIT Pets	97.56 ± 0.03	97.32 ± 0.11	94.67 ± 0.15	96.62 ± 0.23	_
Oxford Flowers-102	99.68 ± 0.02	99.74 ± 0.00	99.61 ± 0.02	99.63 ± 0.03	_
VTAB (19 tasks)	77.63 ± 0.23	76.28 ± 0.46	72.72 ± 0.21	76.29 ± 1.70	_
TPUv3-core-days	2.5k	0.68k	0.23k	9.9k	12.3k

Scale Better with More Data

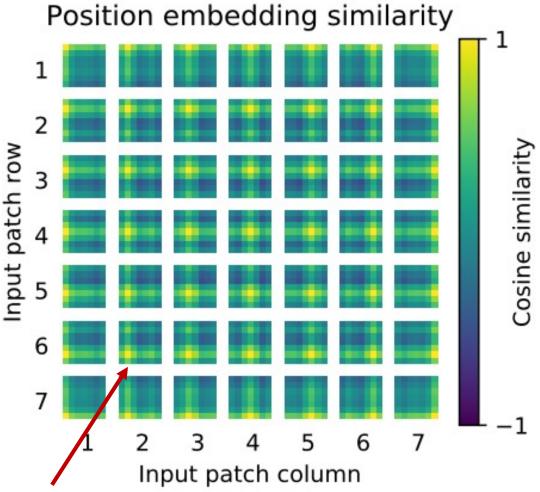




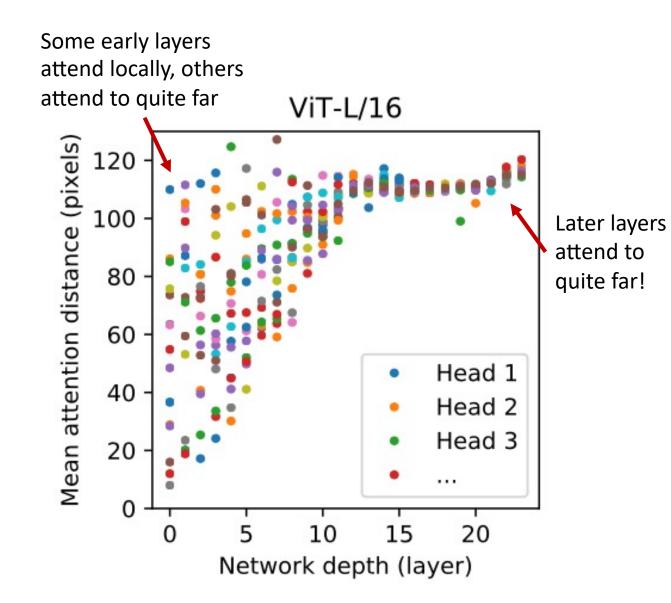
Surprisingly, faster than ResNets to train



Visualization

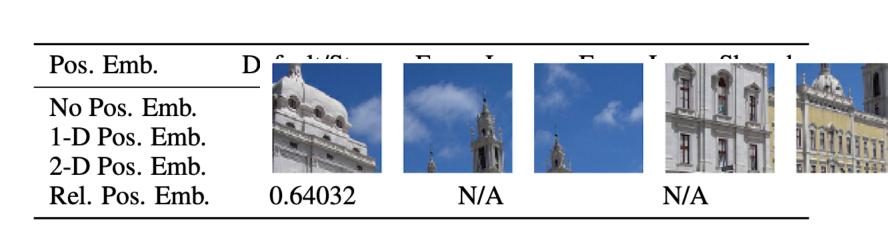


Position encoding automatically learn spatial proximity

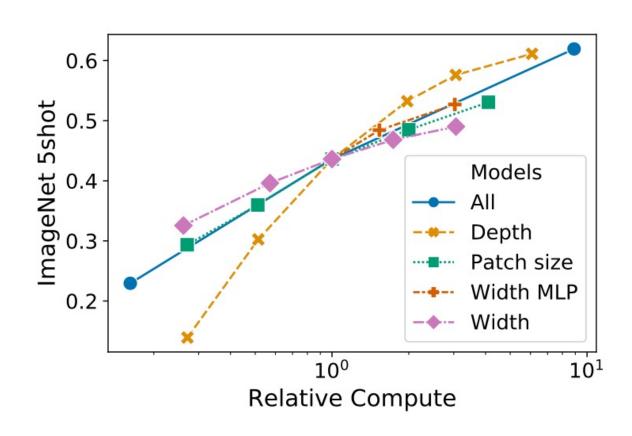


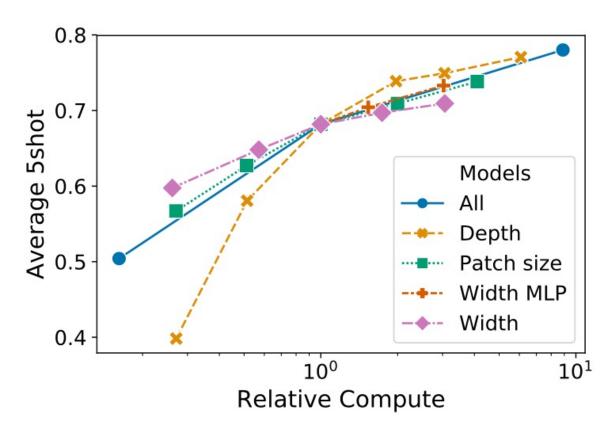
Positional Embedding

- Bag of word is insufficient
- Many encodings work well



Scaling depth is most effective at current operating point

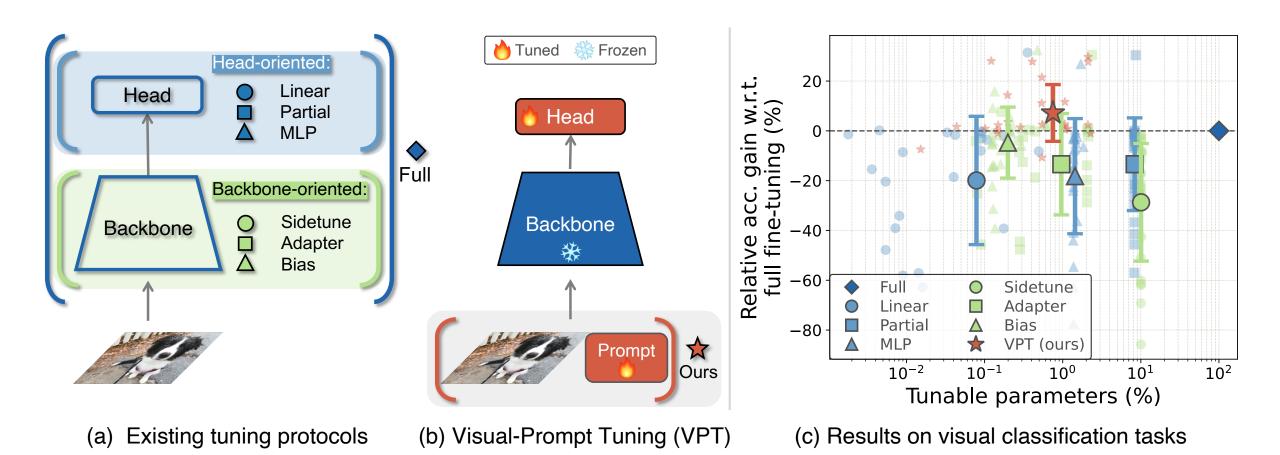




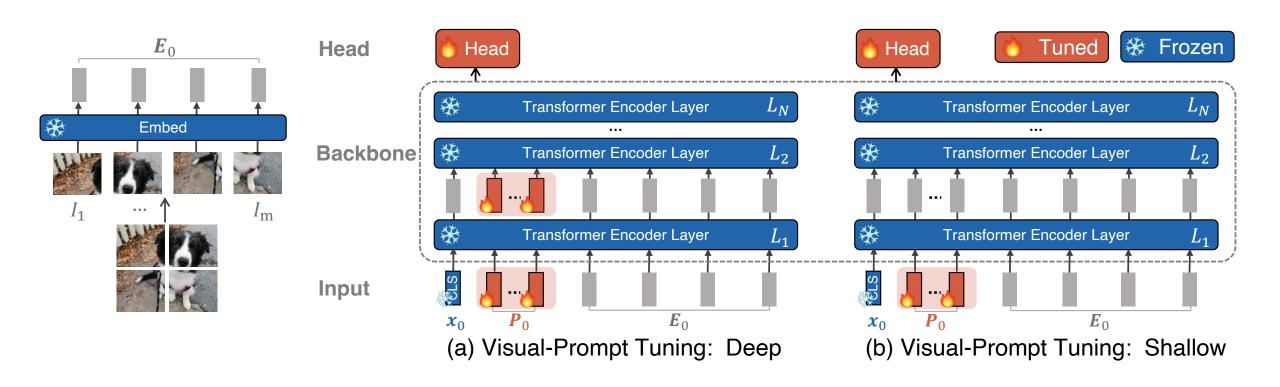
Finetuning at Higher-Resolution

- Often beneficial to fine-tune at higher
- Keep patch-size same, increase number of patches
- ViT can in-principle handle longer sequence lengths
- Except, positional encodings need to be interpolated.

How to finetune Transformer architectures?



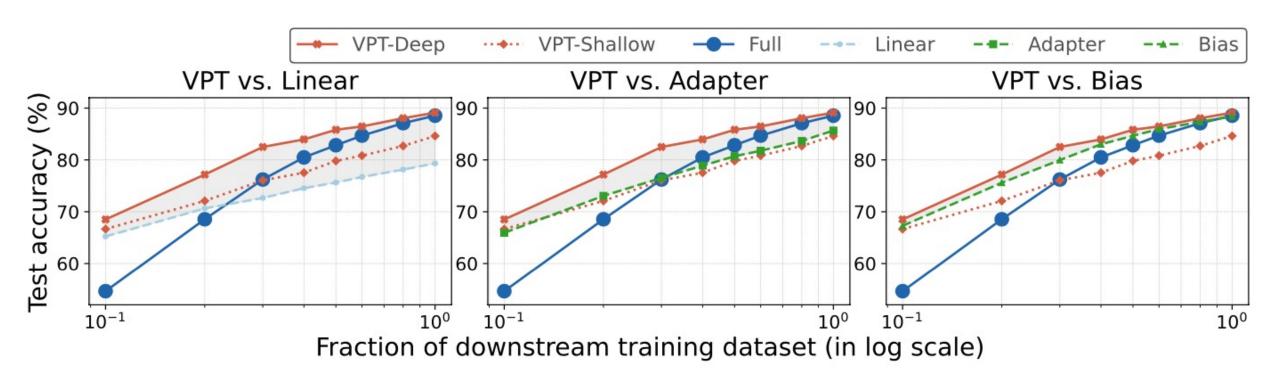
How to finetune Transformer architectures?



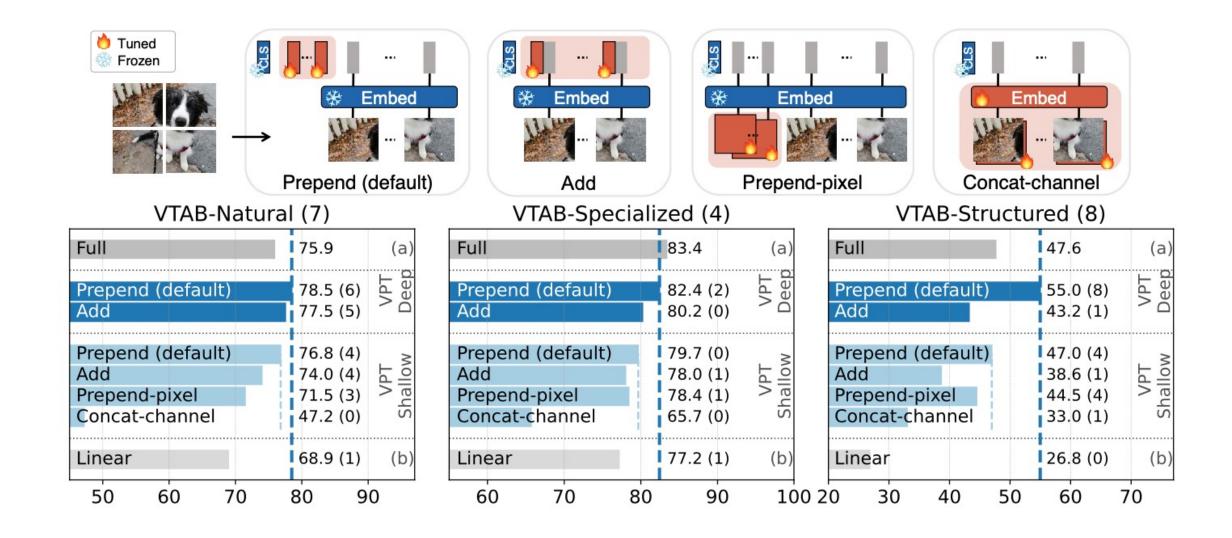
Datasets

- VTAB Dataset
 - Collection of 19 diverse visual classification tasks from 3 groups:
 - Natural: natural images captured using standard cameras
 - Specialized: such as medical and satellite imagery
 - Structured: geometric comprehension like object counting.
 - Each task of VTAB contains 1000 training examples.
- FGVC Dataset
 - 5 benchmarked Fine-Grained Visual Classification tasks
 - CUB-200-2011 (birds), NABirds, Oxford Flowers, Stanford Dogs, Stanford Cars

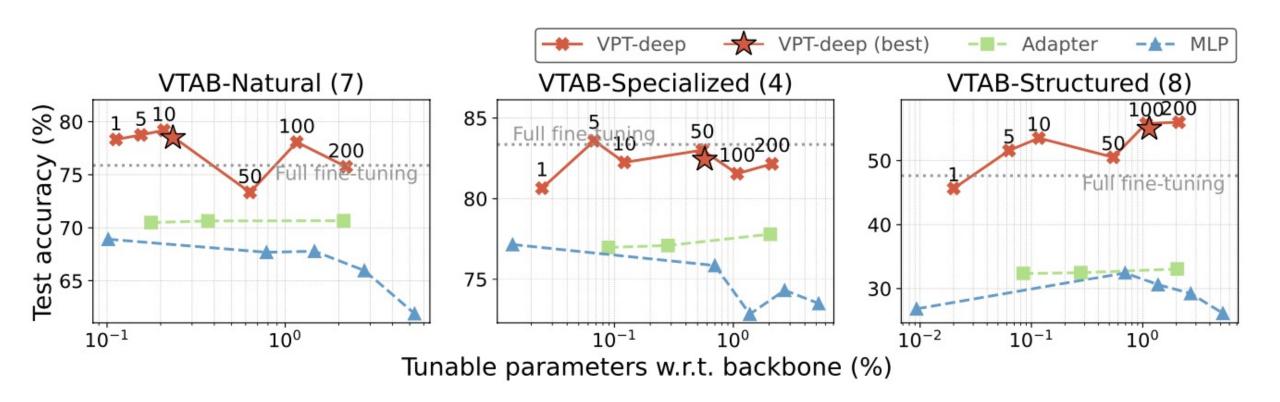
Outperforms CNN finetuning methods, deep better than shallow



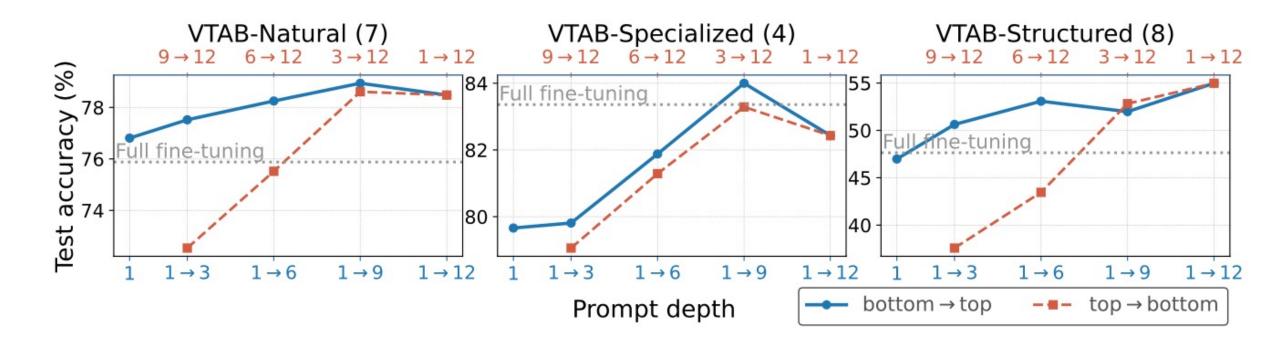
Appending tokens is best



May need to add many tokens



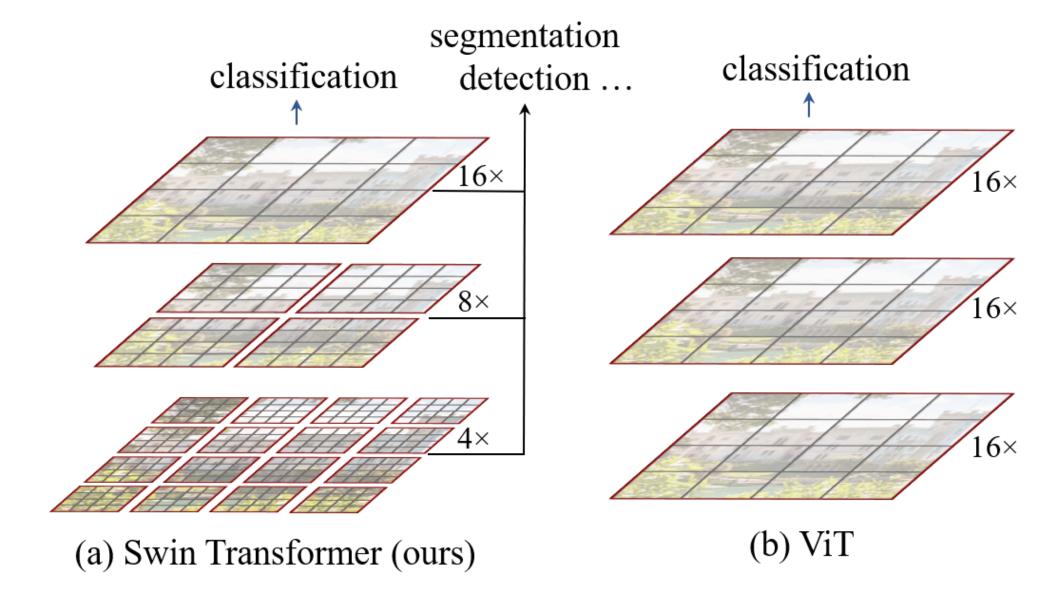
Tokens in early layers is better than later layers



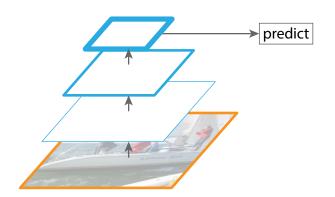
Also applicable to CNNs!

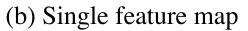
		ConvNeXt-Base (87.6M)					ResNet-50 (23.5M)				
		Total		VTAB-1k		Total		VTAB-1k			
		params	Natural	Specialized	${\bf Structured}$	params	Natural	Specialized	Structured		
	Total # of tasks		7	4	8		7	4	8		
(a)	Full	19.01×	77.97	83.71	60.41	19.08×	59.72	76.66	54.08		
	LINEAR	1.01×	74.48 (5)	81.50 (0)	34.76 (1)	1.08×	63.75 (6)	77.60 (3)	30.96 (0)		
(b)	Partial-1	$2.84 \times$	73.76 (4)	81.64 (0)	39.55(0)	$4.69 \times$	64.34 (6)	78.64 (2)	45.78 (1)		
	Mlp-3	$1.47\times$	73.78 (5)	81.36 (1)	35.68(1)	$7.87 \times$	61.79 (6)	70.77 (1)	33.97 (0)		
(c)	Bias	1.04×	69.07 (2)	72.81 (0)	25.29 (0)	1.10×	63.51 (6)	77.22 (2)	33.39 (0)		
(ours)	Visual-Prompt Tuning	1.02×	78.48 (6)	83.00 (1)	44.64 (1)	1.09×	66.25 (6)	77.32 (2)	37.52 (0)		

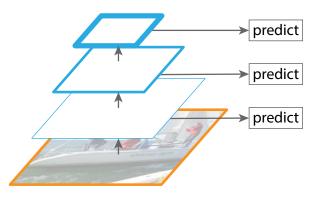
All representations are at the same scale



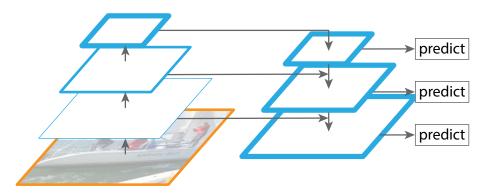
FPNs for CNN Object Detectors







(c) Pyramidal feature hierarchy



(d) Feature Pyramid Network

Faster R-CNN	proposals	feature	head	lateral?	top-down?	AP@0.5	AP	AP_s	AP_m	AP_l
(*) baseline from He <i>et al</i> . $[16]^{\dagger}$	RPN, C_4	C_4	conv5			47.3	26.3	-	-	-
(a) baseline on conv4	RPN, C_4	C_4	conv5			53.1	31.6	13.2	35.6	47.1
(b) baseline on conv5	RPN, C_5	C_5	2fc			51.7	28.0	9.6	31.9	43.1
(c) FPN	RPN, $\{P_k\}$	$\{P_k\}$	2fc	\checkmark	\checkmark	56.9	33.9	17.8	37.7	45.8

SWin Transformer (Patch Merging)

- Merge 2x2 neighboring patches
- Apply linear layer on the 4C-dimensional concatenated features (no pooling?)
- Reduces number of tokens by a factor of 4
- Output channels is set to 2C

SWin Transformer

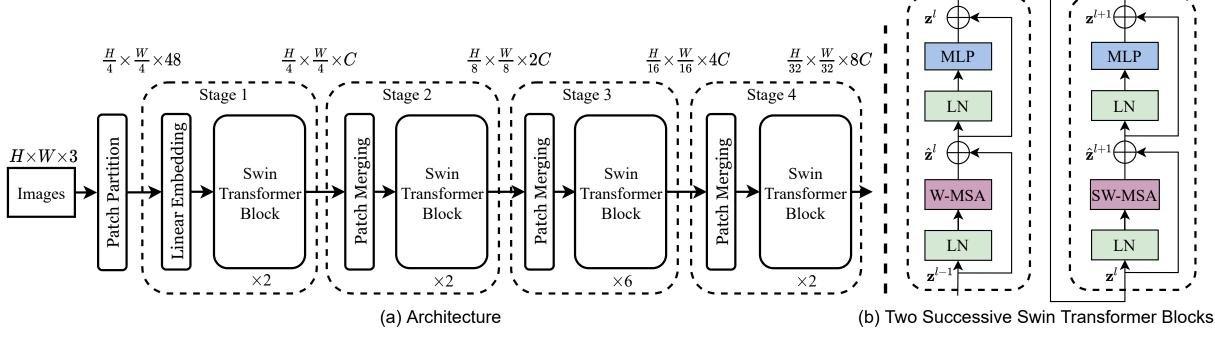


Figure 3. (a) The architecture of a Swin Transformer (Swin-T); (b) two successive Swin Transformer Blocks (notation presented with Eq. (3)). W-MSA and SW-MSA are multi-head self attention modules with regular and shifted windowing configurations, respectively.

SWin Transformer

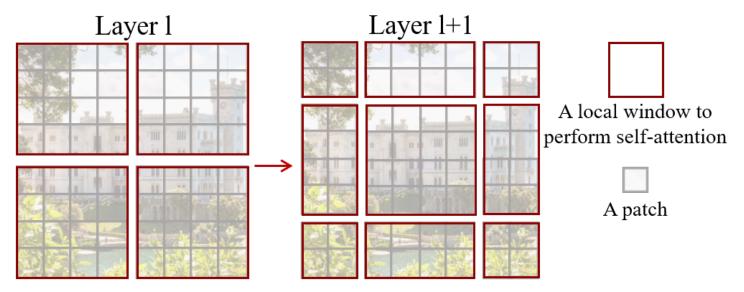


Figure 2. An illustration of the *shifted window* approach for computing self-attention in the proposed Swin Transformer architecture. In layer l (left), a regular window partitioning scheme is adopted, and self-attention is computed within each window. In the next layer l+1 (right), the window partitioning is shifted, resulting in new windows. The self-attention computation in the new windows crosses the boundaries of the previous windows in layer l, providing connections among them.

SWin Transformer

(b) ImageNet-22K pre-trained models										
method	image #param		FLOPs	throughput (image / s)	ImageNet					
		size #param.		(image / s)	top-1 acc.					
R-101x3 [38]	384 ²	388M	204.6G	-	84.4					
R-152x4 [38]	$ 480^2 $	937M	840.5G	-	85.4					
ViT-B/16 [20]	384 ²	86M	55.4G	85.9	84.0					
ViT-L/16 [20]	384 ²	307M	190.7G	27.3	85.2					
Swin-B	224^{2}	88M	15.4G	278.1	85.2					
Swin-B	384 ²	88M	47.0G	84.7	86.4					
Swin-L	384 ²	197M	103.9G	42.1	87.3					

Table 1. Comparison of different backbones on ImageNet-1K classification. Throughput is measured using the GitHub repository of [68] and a V100 GPU, following [63].

(a) Various frameworks										
Metho	od	Backb	one	AP ^{box}	AP_{50}^{box}	AP ₇₅ ^{box}	#pa	aram.	FLOPs	FPS
Casca	.de	R-5		46.3	64.3	50.5		2M	739G	
Mask R-	CNN	Swin	i-T	50.5	69.3	54.9	8	6M	745G	15.3
ATS	C	R-5	0	43.5	61.9	47.0	3	2M	205G	28.3
AIS	3	Swin	ı-T	47.2	66.5	51.3	3	6M	215G	22.3
DanDain) D - : 4 - V/2		0	46.5	64.6	50.3	4:	2M	274G	13.6
RepPoin	its v Z	Swin	n-T	50.0	68.5	54.2	4	5M	283G	12.0
Spars	se	R-5	0	44.5	63.4	48.2	10)6M	166G	21.0
R-CN	IN	Swin	ı-T	47.9	67.3	52.3	11	0M	172G	18.4
(b)	Vario	us bac	kbor	ies w.	Casc	ade M	ask	R-C	NN	
	AP ^{box}	$^{x}AP_{50}^{box}$	AP_{75}^{box}	$^{x} AP^{m}$	ask AP5	nask AP	mask 75	paran	nFLOP	sFPS
DeiT-S [†]	48.0	67.2	51.7	41.	4 64	.2 44	1.3	80M	889G	10.4
R50	46.3	64.3	50.5	40.	1 61	.7 43	3.4	82M	739G	18.0
Swin-T	50.5	69.3	54.9	43.	7 66	.6 47	7.1	86M	745G	15.3
X101-32	48.1	66.5	52.4	41.	6 63	.9 45	5.2	101N	1 819G	12.8

44.7

41.7

45.0

67.9

64.0

68.4

48.5

45.1

Swin-S | **51.8 70.4 56.3** |

X101-64 48.3 66.4 52.3

Swin-B **51.9 70.9 56.5**

1107M 838G 12.0

140M 972G 10.4

48.7 | 145M 982G 11.6

Plain ViT Backbones

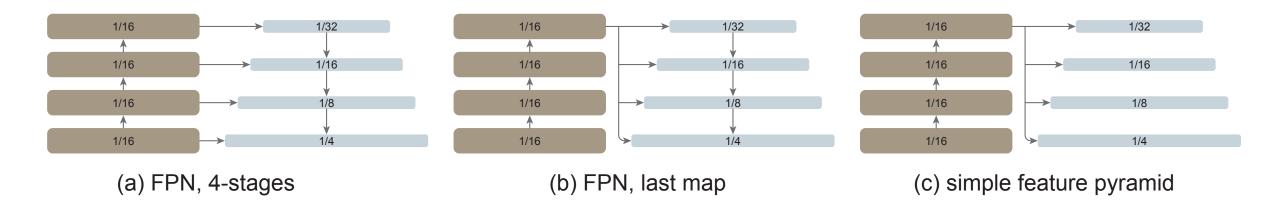


hierarchical backbone, w/ FPN

plain backbone, w/ simple feature pyramid

Figure 1: A typical hierarchical-backbone detector (left) vs. our plain-backbone detector (right). Traditional hierarchical backbones can be naturally adapted for multi-scale detection, e.g., using FPN. Instead, we explore building a simple pyramid from only the last, large-stride (16) feature map of a plain backbone.

Plain ViT Backbones



	•	Г-В	Vi]	- -
pyramid design	AP ^{box}	AP ^{mask}	AP ^{box}	AP ^{mask}
no feature pyramid	47.8	42.5	51.2	45.4
(a) FPN, 4-stage	50.3 (+2.5)	44.9 (+2.4)	54.4 (+3.2)	48.4 (+3.0)
(b) FPN, last-map	50.9 (+3.1)	45.3 (+2.8)	54.6 (+3.4)	48.5 (+3.1)
(c) simple feature pyramid	51.2 (+3.4)	45.5 (+3.0)	54.6 (+3.4)	48.6 (+3.2)

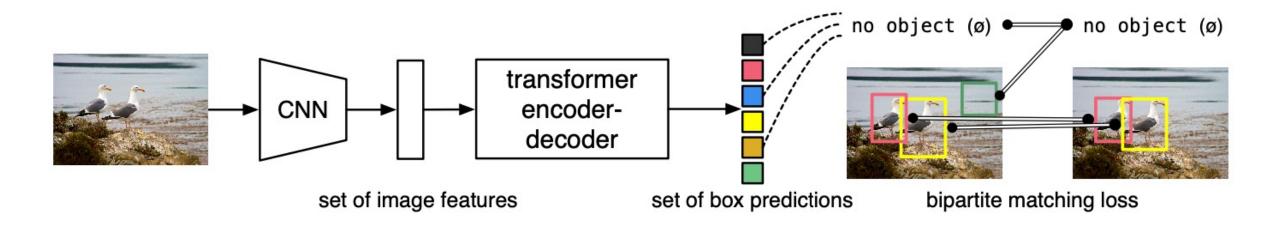
Plain ViT Backbones

		Mask R-CNN		Cascade M	ask R-CNN
backbone	pre-train	AP ^{box}	AP ^{mask}	AP ^{box}	AP ^{mask}
hierarchical-b	oackbone detec	tors:			
Swin-B	21K, sup	51.4	45.4	54.0	46.5
Swin-L	21K, sup	52.4	46.2	54.8	47.3
MViTv2-B	21K, sup	53.1	47.4	55.6	48.1
MViTv2-L	21K, sup	53.6	47.5	55.7	48.3
MViTv2-H	21K, sup	54.1	47.7	55.8	48.3
our plain-bac	kbone detector	'S :		•	
ViT-B	1K, mae	51.6	45.9	54.0	46.7
ViT-L	1K, mae	55.6	49.2	57.6	49.8
ViT-H	1K, mae	56.7	50.1	58.7	50.9

Table 5: Comparisons of plain vs. hierarchical backbones using Mask R-CNN [25] and Cascade Mask R-CNN [4] on COCO. Tradeoffs are plotted in Figure 3. All entries are implemented and run by us to align low-level details.

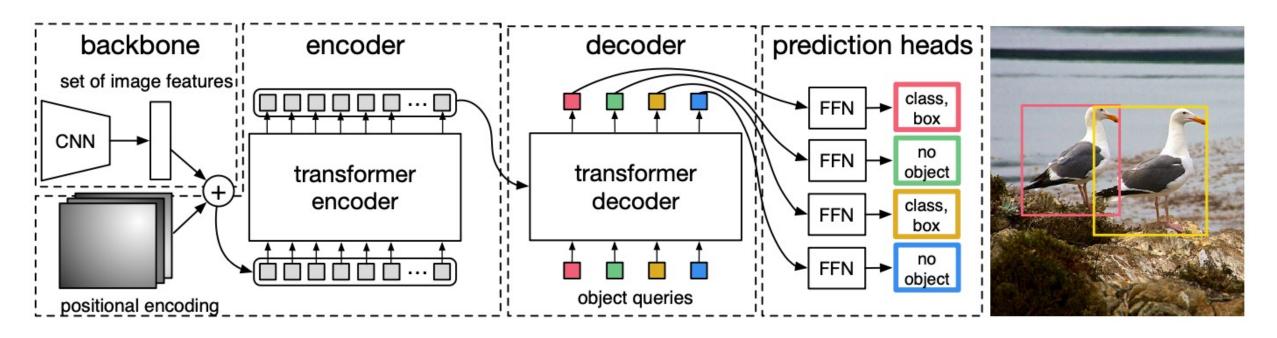
End-to-End Object Detection with Transformers

- Do we need specialized machinery (i.e. Faster RCNN) for object detection?
- Cast detection as a set prediction problem



End-to-End Object Detection with Transformers

Architecture



End-to-End Object Detection with Transformers

Set matching loss function

•
$$\hat{\sigma} = \underset{\sigma \in \mathfrak{S}_N}{\operatorname{arg \, min}} \sum_{i}^{N} \mathcal{L}_{\operatorname{match}}(y_i, \hat{y}_{\sigma(i)})$$

$$-\mathbb{1}_{\{c_i \neq \varnothing\}} \hat{p}_{\sigma(i)}(c_i) + \mathbb{1}_{\{c_i \neq \varnothing\}} \mathcal{L}_{\operatorname{box}}(b_i, \hat{b}_{\sigma(i)})$$
• $\mathcal{L}_{\operatorname{Hungarian}}(y, \hat{y}) = \sum_{i=1}^{N} \left[-\log \hat{p}_{\hat{\sigma}(i)}(c_i) + \mathbb{1}_{\{c_i \neq \varnothing\}} \mathcal{L}_{\operatorname{box}}(b_i, \hat{b}_{\hat{\sigma}}(i)) \right]$

Comparison against Faster RCNN

Table 1: Comparison with Faster R-CNN with a ResNet-50 and ResNet-101 backbones on the COCO validation set. The top section shows results for Faster R-CNN models in Detectron2 [50], the middle section shows results for Faster R-CNN models with GIoU [38], random crops train-time augmentation, and the long 9x training schedule. DETR models achieve comparable results to heavily tuned Faster R-CNN baselines, having lower AP_S but greatly improved AP_L. We use torchscript Faster R-CNN and DETR models to measure FLOPS and FPS. Results without R101 in the name correspond to ResNet-50.

Model	GFLOPS/FPS	#params	AP	AP_{50}	AP_{75}	AP_{S}	AP_{M}	$\mathrm{AP_L}$
Faster RCNN-DC5	320/16	166M	39.0	60.5	42.3	21.4	43.5	52.5
Faster RCNN-FPN	180/26	42M	40.2	61.0	43.8	24.2	43.5	52.0
Faster RCNN-R101-FPN	246/20	60M	42.0	62.5	45.9	25.2	45.6	54.6
Faster RCNN-DC5+	320/16	166M	41.1	61.4	44.3	22.9	45.9	55.0
Faster RCNN-FPN+	180/26	42M	42.0	62.1	45.5	26.6	45.4	53.4
Faster RCNN-R101-FPN+	246/20	60M	44.0	63.9	47.8	27.2	48.1	56.0
DETR	86/28	41M	42.0	62.4	44.2	20.5	45.8	61.1
DETR-DC5	187/12	41M	43.3	63.1	45.9	22.5	47.3	61.1
DETR-R101	152/20	60M	43.5	63.8	46.4	21.9	48.0	61.8
DETR-DC5-R101	253/10	60M	44.9	64.7	47.7	23.7	49.5	62.3

What do object queries learn?

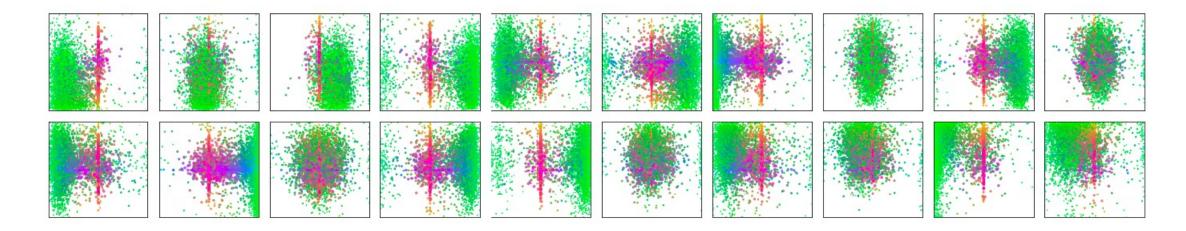


Fig. 7: Visualization of all box predictions on all images from COCO 2017 val set for 20 out of total N=100 prediction slots in DETR decoder. Each box prediction is represented as a point with the coordinates of its center in the 1-by-1 square normalized by each image size. The points are color-coded so that green color corresponds to small boxes, red to large horizontal boxes and blue to large vertical boxes. We observe that each slot learns to specialize on certain areas and box sizes with several operating modes. We note that almost all slots have a mode of predicting large image-wide boxes that are common in COCO dataset.