
Generative Models

Slides from Justin Johnson

Slide from Justin Johnson

Supervised vs Unsupervised Learning
Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, regression,
object detection, semantic
segmentation, image captioning, etc.

Cat

Classification

This image is CC0 public domain

https://pixabay.com/en/kitten-cute-feline-kitty-domestic-1246693/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Slide from Justin Johnson

Supervised vs Unsupervised Learning
Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, regression,
object detection, semantic
segmentation, image captioning, etc.

DOG, DOG, CAT
This image is CC0 public domain

Object Detection

https://pixabay.com/en/pets-christmas-dogs-cat-962215/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Slide from Justin Johnson

Supervised vs Unsupervised Learning
Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, regression,
object detection, semantic
segmentation, image captioning, etc.

Semantic Segmentation

GRASS, CAT, TREE, SKY

Slide from Justin Johnson

Supervised vs Unsupervised Learning
Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, regression,
object detection, semantic
segmentation, image captioning, etc.

Image captioning

A cat sitting on a
suitcase on the floor

Caption generated using neuraltalk2
Image is CC0 Public domain.

https://github.com/karpathy/neuraltalk2
https://pixabay.com/en/luggage-antique-cat-1643010/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Slide from Justin Johnson

Supervised vs Unsupervised Learning
Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, regression,
object detection, semantic
segmentation, image captioning, etc.

Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying
hidden structure of the data

Examples: Clustering,
dimensionality reduction, feature
learning, density estimation, etc.

Slide from Justin Johnson

Supervised vs Unsupervised Learning
Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying
hidden structure of the data

Examples: Clustering,
dimensionality reduction, feature
learning, density estimation, etc.

Clustering
(e.g. K-Means)

This image is CC0 public domain

https://commons.wikimedia.org/wiki/File:ClusterAnalysis_Mouse.svg
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Slide from Justin Johnson

Supervised vs Unsupervised Learning
Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying
hidden structure of the data

Examples: Clustering,
dimensionality reduction, feature
learning, density estimation, etc.

Dimensionality Reduction
(e.g. Principal Components Analysis)

This image from Matthias Scholz is CC0 public domain

3D 2D

http://phdthesis-bioinformatics-maxplanckinstitute-molecularplantphys.matthias-scholz.de/fig_pca_illu3d.png
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Slide from Justin Johnson

Supervised vs Unsupervised Learning
Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying
hidden structure of the data

Examples: Clustering,
dimensionality reduction, feature
learning, density estimation, etc.

Feature Learning
(e.g. autoencoders)

Slide from Justin Johnson

Supervised vs Unsupervised Learning
Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying
hidden structure of the data

Examples: Clustering,
dimensionality reduction, feature
learning, density estimation, etc.

Learning the distribution
e.g. density estimation

Images left and right are CC0 public domain

https://commons.wikimedia.org/wiki/File:Bivariate_example.png
https://www.flickr.com/photos/omegatron/8533520357
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Slide from Justin Johnson

Supervised vs Unsupervised Learning
Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying
hidden structure of the data

Examples: Clustering,
dimensionality reduction, feature
learning, density estimation, etc.

Learning the distribution
e.g. sampling from it

Images left and right are CC0 public domain

https://commons.wikimedia.org/wiki/File:Bivariate_example.png
https://www.flickr.com/photos/omegatron/8533520357
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Slide from Justin Johnson

Supervised vs Unsupervised Learning
Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, regression,
object detection, semantic
segmentation, image captioning, etc.

Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying
hidden structure of the data

Examples: Clustering,
dimensionality reduction, feature
learning, density estimation, etc.

Types of Generative
Models

Figure from Probabilistic Machine Learning:
Advanced Topics, adapted from
https://lilianweng.github.io/posts/2021-07-11-
diffusion-models/

https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

Application of Generative Models (Image in-painting)

Application of Generative Models (As a prior)

Dream Fusion: Text-to-3D Using 2D Diffusion

https://arxiv.org/pdf/2209.14988.pdf

Application of Generative Models (As a prior)

Dream Fusion: Text-to-3D Using 2D Diffusion

https://arxiv.org/pdf/2209.14988.pdf

Application of Generative Models (Image generation)

Variational Autoencoders

Slide from Justin Johnson

Variational Autoencoders

PixelRNN / PixelCNN explicitly parameterizes density function with a neural
network, so we can train to maximize likelihood of training data:

Variational Autoencoders (VAE) define an intractable density that we
cannot explicitly compute or optimize

But we will be able to directly optimize a lower bound on the density

p!(𝑥) =&
"#$

%

𝑝! 𝑥" 𝑥$, … , 𝑥"&$)

Slide from Justin Johnson

Variational Autoencoders

Slide from Justin Johnson

(Regular, non-variational) Autoencoders
Unsupervised method for learning feature vectors from raw data x, without any labels

Encoder

Input data

Features

Originally: Linear + nonlinearity (sigmoid)
Later: Deep, fully-connected
Later: ReLU CNN

Features should extract useful
information (maybe object identities,
properties, scene type, etc) that we
can use for downstream tasks

Input Data

Slide from Justin Johnson

(Regular, non-variational) Autoencoders
Problem: How can we learn this feature transform from raw data?

Encoder

Input data

Features

Originally: Linear + nonlinearity (sigmoid)
Later: Deep, fully-connected
Later: ReLU CNN

Features should extract useful
information (maybe object identities,
properties, scene type, etc) that we
can use for downstream tasks
But we can’t observe features!

Input Data

Slide from Justin Johnson

(Regular, non-variational) Autoencoders
Problem: How can we learn this feature transform from raw data?

Encoder

Input data

Features

Idea: Use the features to reconstruct the input data with a decoder
“Autoencoding” = encoding itself

Decoder

Reconstructed
input data

Originally: Linear +
nonlinearity (sigmoid)
Later: Deep, fully-connected
Later: ReLU CNN (upconv)

Input Data

Slide from Justin Johnson

(Regular, non-variational) Autoencoders

Encoder

Input data

Features

Loss: L2 distance between input and reconstructed data.

Decoder

Reconstructed
input data

Loss Function

!𝑥 − 𝑥 !
!

Input Data

Does not use any
labels! Just raw data!

Slide from Justin Johnson

(Regular, non-variational) Autoencoders

Encoder

Input data

Features

Loss: L2 distance between input and reconstructed data.

Decoder

Reconstructed
input data

Loss Function

!𝑥 − 𝑥 !
!

Input Data

Does not use any
labels! Just raw data!

Reconstructed data

Decoder:
4 tconv layers
Encoder:
4 conv layers

Slide from Justin Johnson

(Regular, non-variational) Autoencoders

Encoder

Input data

Features

Loss: L2 distance between input and reconstructed data.

Decoder

Reconstructed
input data

Loss Function

!𝑥 − 𝑥 !
!

Input Data

Does not use any
labels! Just raw data!

Reconstructed data

Decoder:
4 tconv layers
Encoder:
4 conv layers

Features need to be
lower dimensional
than the data

Slide from Justin Johnson

(Regular, non-variational) Autoencoders

Encoder

Input data

Features

After training, throw away decoder and use encoder for a downstream task

Decoder

Reconstructed
input data

After training,
throw away decoder

Slide from Justin Johnson

(Regular, non-variational) Autoencoders

Encoder

Input data

Features

After training, throw away decoder and use encoder for a downstream task

Classifier

Predicted Label

Loss function
(Softmax, etc)

Fine-tune
encoder
jointly with
classifier

Encoder can be
used to initialize a
supervised model

plane
dog deer

bird
truck

Train for final task
(sometimes with

small data)

Slide from Justin Johnson

(Regular, non-variational) Autoencoders

Encoder

Input data

Features

Autoencoders learn latent features for data without any labels!
Can use features to initialize a supervised model
Not probabilistic: No way to sample new data from learned model

Decoder

Reconstructed
input data

Slide from Justin Johnson

Variational Autoencoders

Kingma and Welling, Auto-Encoding Variational Beyes, ICLR 2014

Slide from Justin Johnson

Variational Autoencoders

Probabilistic spin on autoencoders:
1. Learn latent features z from raw data
2. Sample from the model to generate new data

Slide from Justin Johnson

Variational Autoencoders

Assume training data 𝑥 !
!"#
$

is
generated from unobserved (latent)
representation z

Probabilistic spin on autoencoders:
1. Learn latent features z from raw data
2. Sample from the model to generate new data

Intuition: x is an image, z is latent
factors used to generate x:
attributes, orientation, etc.

Slide from Justin Johnson

Variational Autoencoders

Probabilistic spin on autoencoders:
1. Learn latent features z from raw data
2. Sample from the model to generate new data

Sample z
from prior

Sample from
conditional

After training, sample new data like this: Intuition: x is an image, z is latent
factors used to generate x:
attributes, orientation, etc.

Assume training data 𝑥 !
!"#
$

is
generated from unobserved (latent)
representation z

Slide from Justin Johnson

Variational Autoencoders

Probabilistic spin on autoencoders:
1. Learn latent features z from raw data
2. Sample from the model to generate new data

Sample z
from prior

Sample from
conditional

After training, sample new data like this: Intuition: x is an image, z is latent
factors used to generate x:
attributes, orientation, etc.

Assume simple prior p(z), e.g. Gaussian

Assume training data 𝑥 !
!"#
$

is
generated from unobserved (latent)
representation z

Slide from Justin Johnson

Variational Autoencoders

Probabilistic spin on autoencoders:
1. Learn latent features z from raw data
2. Sample from the model to generate new data

Sample z
from prior

Sample from
conditional

After training, sample new data like this: Intuition: x is an image, z is latent
factors used to generate x:
attributes, orientation, etc.

Assume simple prior p(z), e.g. Gaussian

Represent p(x|z) with a neural network
(Similar to decoder from autencoder)

Assume training data 𝑥 !
!"#
$

is
generated from unobserved (latent)
representation z

Slide from Justin Johnson

Variational Autoencoders

Sample z
from prior

Sample from
conditional

Intuition: x is an image, z is latent
factors used to generate x:
attributes, orientation, etc.

Assume simple prior p(z), e.g. Gaussian

Represent p(x|z) with a neural network
(Similar to decoder from autencoder)

Decoder must be probabilistic:
Decoder inputs z, outputs mean μx|z
and (diagonal) covariance ∑x|z

Sample x from Gaussian with mean
μx|z and (diagonal) covariance ∑x|z

Assume training data 𝑥 !
!"#
$

is
generated from unobserved (latent)
representation z

Slide from Justin Johnson

Variational Autoencoders

Sample z
from prior

Sample from
conditional

Decoder must be probabilistic:
Decoder inputs z, outputs mean μx|z
and (diagonal) covariance ∑x|z

Sample x from Gaussian with mean
μx|z and (diagonal) covariance ∑x|z How to train this model?

Basic idea: maximize likelihood of data

If we could observe the z for each x, then
could train a conditional generative model
p(x|z)

Assume training data 𝑥 !
!"#
$

is
generated from unobserved (latent)
representation z

Slide from Justin Johnson

Variational Autoencoders

Sample z
from prior

Sample from
conditional

Decoder must be probabilistic:
Decoder inputs z, outputs mean μx|z
and (diagonal) covariance ∑x|z

Sample x from Gaussian with mean
μx|z and (diagonal) covariance ∑x|z How to train this model?

Basic idea: maximize likelihood of data

We don’t observe z, so need to marginalize:

𝑝' 𝑥 = *𝑝' 𝑥, 𝑧 𝑑𝑧 = *𝑝' 𝑥 𝑧 𝑝' 𝑧 𝑑𝑧

Assume training data 𝑥 !
!"#
$

is
generated from unobserved (latent)
representation z

Slide from Justin Johnson

Variational Autoencoders

Sample z
from prior

Sample from
conditional

Decoder must be probabilistic:
Decoder inputs z, outputs mean μx|z
and (diagonal) covariance ∑x|z

Sample x from Gaussian with mean
μx|z and (diagonal) covariance ∑x|z How to train this model?

Basic idea: maximize likelihood of data

We don’t observe z, so need to marginalize:

𝑝' 𝑥 = *𝑝' 𝑥, 𝑧 𝑑𝑧 = *𝑝' 𝑥 𝑧 𝑝' 𝑧 𝑑𝑧

Ok, can compute this with decoder network

Assume training data 𝑥 !
!"#
$

is
generated from unobserved (latent)
representation z

Slide from Justin Johnson

Variational Autoencoders

Sample z
from prior

Sample from
conditional

Decoder must be probabilistic:
Decoder inputs z, outputs mean μx|z
and (diagonal) covariance ∑x|z

Sample x from Gaussian with mean
μx|z and (diagonal) covariance ∑x|z How to train this model?

Basic idea: maximize likelihood of data

We don’t observe z, so need to marginalize:

𝑝' 𝑥 = *𝑝' 𝑥, 𝑧 𝑑𝑧 = *𝑝' 𝑥 𝑧 𝑝' 𝑧 𝑑𝑧

Ok, we assumed Gaussian prior for z

Assume training data 𝑥 !
!"#
$

is
generated from unobserved (latent)
representation z

Slide from Justin Johnson

Variational Autoencoders

Sample z
from prior

Sample from
conditional

Decoder must be probabilistic:
Decoder inputs z, outputs mean μx|z
and (diagonal) covariance ∑x|z

Sample x from Gaussian with mean
μx|z and (diagonal) covariance ∑x|z How to train this model?

Basic idea: maximize likelihood of data

We don’t observe z, so need to marginalize:

𝑝' 𝑥 = *𝑝' 𝑥, 𝑧 𝑑𝑧 = *𝑝' 𝑥 𝑧 𝑝' 𝑧 𝑑𝑧

Problem: Impossible to integrate over all z!

Assume training data 𝑥 !
!"#
$

is
generated from unobserved (latent)
representation z

Slide from Justin Johnson

Variational Autoencoders

Sample z
from prior

Sample from
conditional

Decoder must be probabilistic:
Decoder inputs z, outputs mean μx|z
and (diagonal) covariance ∑x|z

Sample x from Gaussian with mean
μx|z and (diagonal) covariance ∑x|z How to train this model?

Basic idea: maximize likelihood of data

Another idea: Try Bayes’ Rule:

Recall 𝑝 𝑥, 𝑧 = 𝑝 𝑥 𝑧 𝑝 𝑧 = 𝑝 𝑧 𝑥 𝑝 𝑥

𝑝' 𝑥 =
𝑝' 𝑥 𝑧)𝑝' 𝑧
𝑝' 𝑧 𝑥)

Assume training data 𝑥 !
!"#
$

is
generated from unobserved (latent)
representation z

Slide from Justin Johnson

Variational Autoencoders

Sample z
from prior

Sample from
conditional

Decoder must be probabilistic:
Decoder inputs z, outputs mean μx|z
and (diagonal) covariance ∑x|z

Sample x from Gaussian with mean
μx|z and (diagonal) covariance ∑x|z How to train this model?

Basic idea: maximize likelihood of data

Another idea: Try Bayes’ Rule:

Recall 𝑝 𝑥, 𝑧 = 𝑝 𝑥 𝑧 𝑝 𝑧 = 𝑝 𝑧 𝑥 𝑝 𝑥

Ok, compute with
decoder network

𝑝' 𝑥 =
𝑝' 𝑥 𝑧)𝑝' 𝑧
𝑝' 𝑧 𝑥)

Assume training data 𝑥 !
!"#
$

is
generated from unobserved (latent)
representation z

Slide from Justin Johnson

Variational Autoencoders

Sample z
from prior

Sample from
conditional

Decoder must be probabilistic:
Decoder inputs z, outputs mean μx|z
and (diagonal) covariance ∑x|z

Sample x from Gaussian with mean
μx|z and (diagonal) covariance ∑x|z How to train this model?

Basic idea: maximize likelihood of data

Another idea: Try Bayes’ Rule:

Recall 𝑝 𝑥, 𝑧 = 𝑝 𝑥 𝑧 𝑝 𝑧 = 𝑝 𝑧 𝑥 𝑝 𝑥

Ok, we assumed
Gaussian prior

𝑝' 𝑥 =
𝑝' 𝑥 𝑧)𝑝' 𝑧
𝑝' 𝑧 𝑥)

Assume training data 𝑥 !
!"#
$

is
generated from unobserved (latent)
representation z

Slide from Justin Johnson

Variational Autoencoders

Sample z
from prior

Sample from
conditional

Decoder must be probabilistic:
Decoder inputs z, outputs mean μx|z
and (diagonal) covariance ∑x|z

Sample x from Gaussian with mean
μx|z and (diagonal) covariance ∑x|z How to train this model?

Basic idea: maximize likelihood of data

Another idea: Try Bayes’ Rule:

Recall 𝑝 𝑥, 𝑧 = 𝑝 𝑥 𝑧 𝑝 𝑧 = 𝑝 𝑧 𝑥 𝑝 𝑥

Problem: No way
to compute this!𝑝' 𝑥 =

𝑝' 𝑥 𝑧)𝑝' 𝑧
𝑝' 𝑧 𝑥)

Assume training data 𝑥 !
!"#
$

is
generated from unobserved (latent)
representation z

Slide from Justin Johnson

Variational Autoencoders

Sample z
from prior

Sample from
conditional

Decoder must be probabilistic:
Decoder inputs z, outputs mean μx|z
and (diagonal) covariance ∑x|z

Sample x from Gaussian with mean
μx|z and (diagonal) covariance ∑x|z How to train this model?

Basic idea: maximize likelihood of data

Another idea: Try Bayes’ Rule:

𝑝' 𝑥 =
𝑝' 𝑥 𝑧)𝑝' 𝑧
𝑝' 𝑧 𝑥)

Recall 𝑝 𝑥, 𝑧 = 𝑝 𝑥 𝑧 𝑝 𝑧 = 𝑝 𝑧 𝑥 𝑝 𝑥

Solution: Train
another network

(encoder) that learns
𝑞! 𝑧 𝑥) ≈ 𝑝" 𝑧 𝑥)

Assume training data 𝑥 !
!"#
$

is
generated from unobserved (latent)
representation z

Slide from Justin Johnson

Variational Autoencoders

Sample z
from prior

Sample from
conditional

Decoder must be probabilistic:
Decoder inputs z, outputs mean μx|z
and (diagonal) covariance ∑x|z

Sample x from Gaussian with mean
μx|z and (diagonal) covariance ∑x|z How to train this model?

Basic idea: maximize likelihood of data

Another idea: Try Bayes’ Rule:

𝑝' 𝑥 =
𝑝' 𝑥 𝑧)𝑝' 𝑧
𝑝' 𝑧 𝑥)

≈
𝑝' 𝑥 𝑧)𝑝' 𝑧
𝑞(𝑧 𝑥)

Recall 𝑝 𝑥, 𝑧 = 𝑝 𝑥 𝑧 𝑝 𝑧 = 𝑝 𝑧 𝑥 𝑝 𝑥

Use encoder to compute 𝑞% 𝑧 𝑥) ≈ 𝑝& 𝑧 𝑥)

Assume training data 𝑥 !
!"#
$

is
generated from unobserved (latent)
representation z

Slide from Justin Johnson

Variational Autoencoders

𝑝' 𝑥 | 𝑧 = 𝑁(𝜇)|+ , Σ)|+) 𝑞(𝑧 | 𝑥 = 𝑁(𝜇+|) , Σ+|))

Decoder network inputs
latent code z, gives
distribution over data x

Encoder network inputs
data x, gives distribution
over latent codes z

If we can ensure that
𝑞(𝑧 𝑥) ≈ 𝑝' 𝑧 𝑥),

then we can approximate

𝑝' 𝑥 ≈
𝑝' 𝑥 𝑧)𝑝(𝑧)
𝑞(𝑧 𝑥)

Idea: Jointly train both
encoder and decoder

Slide from Justin Johnson

Variational Autoencoders

log 𝑝!(𝑥) = log
𝑝! 𝑥 𝑧)𝑝(𝑧)
𝑝! 𝑧 𝑥)

Bayes’ Rule

Slide from Justin Johnson

Variational Autoencoders

log 𝑝!(𝑥) = log
𝑝! 𝑥 𝑧)𝑝(𝑧)
𝑝! 𝑧 𝑥) = log

𝑝! 𝑥 𝑧 𝑝 𝑧 𝑞"(𝑧|𝑥)
𝑝! 𝑧 𝑥 𝑞"(𝑧|𝑥)

Multiply top and bottom by qΦ(z|x)

Slide from Justin Johnson

Variational Autoencoders

log 𝑝!(𝑥) = log
𝑝! 𝑥 𝑧)𝑝(𝑧)
𝑝! 𝑧 𝑥) = log

𝑝! 𝑥 𝑧 𝑝 𝑧 𝑞"(𝑧|𝑥)
𝑝! 𝑧 𝑥 𝑞"(𝑧|𝑥)

= log 𝑝! 𝑥 𝑧 − log
𝑞" 𝑧|𝑥
𝑝(𝑧) + log

𝑞"(𝑧|𝑥)
𝑝!(𝑧|𝑥)

Split up using rules for logarithms

Slide from Justin Johnson

Variational Autoencoders

log 𝑝!(𝑥) = log
𝑝! 𝑥 𝑧)𝑝(𝑧)
𝑝! 𝑧 𝑥) = log

𝑝! 𝑥 𝑧 𝑝 𝑧 𝑞"(𝑧|𝑥)
𝑝! 𝑧 𝑥 𝑞"(𝑧|𝑥)

= log 𝑝! 𝑥 𝑧 − log
𝑞" 𝑧|𝑥
𝑝(𝑧) + log

𝑞"(𝑧|𝑥)
𝑝!(𝑧|𝑥)

c

c

c

Split up using rules for logarithms

Slide from Justin Johnson

Variational Autoencoders

log 𝑝!(𝑥) = log
𝑝! 𝑥 𝑧)𝑝(𝑧)
𝑝! 𝑧 𝑥) = log

𝑝! 𝑥 𝑧 𝑝 𝑧 𝑞"(𝑧|𝑥)
𝑝! 𝑧 𝑥 𝑞"(𝑧|𝑥)

= log 𝑝! 𝑥 𝑧 − log
𝑞" 𝑧|𝑥
𝑝(𝑧) + log

𝑞"(𝑧|𝑥)
𝑝!(𝑧|𝑥)

log 𝑝! 𝑥 = 𝐸#~%'(#|() log 𝑝!(𝑥)
We can wrap in an
expectation since it
doesn’t depend on z

Slide from Justin Johnson

Variational Autoencoders

log 𝑝! 𝑥 = 𝐸#~%'(#|() log 𝑝!(𝑥)
We can wrap in an
expectation since it
doesn’t depend on z

log 𝑝!(𝑥) = log
𝑝! 𝑥 𝑧)𝑝(𝑧)
𝑝! 𝑧 𝑥) = log

𝑝! 𝑥 𝑧 𝑝 𝑧 𝑞"(𝑧|𝑥)
𝑝! 𝑧 𝑥 𝑞"(𝑧|𝑥)

= 𝐸#[log 𝑝!(𝑥|𝑧)] − 𝐸# log
𝑞" 𝑧 𝑥
𝑝 𝑧

+ 𝐸# log
𝑞"(𝑧|𝑥)
𝑝!(𝑧|𝑥)

Slide from Justin Johnson

Variational Autoencoders

log 𝑝!(𝑥) = log
𝑝! 𝑥 𝑧)𝑝(𝑧)
𝑝! 𝑧 𝑥) = log

𝑝! 𝑥 𝑧 𝑝 𝑧 𝑞"(𝑧|𝑥)
𝑝! 𝑧 𝑥 𝑞"(𝑧|𝑥)

= 𝐸#[log 𝑝!(𝑥|𝑧)] − 𝐸# log
𝑞" 𝑧 𝑥
𝑝 𝑧

+ 𝐸# log
𝑞"(𝑧|𝑥)
𝑝!(𝑧|𝑥)

= 𝐸(~*'((|-)[log 𝑝.(𝑥|𝑧)] − 𝐷/0 𝑞1 𝑧 𝑥 , 𝑝 𝑧 + 𝐷/0(𝑞1 𝑧 𝑥 , 𝑝. 𝑧 𝑥)

Data reconstruction

Slide from Justin Johnson

Variational Autoencoders

log 𝑝!(𝑥) = log
𝑝! 𝑥 𝑧)𝑝(𝑧)
𝑝! 𝑧 𝑥) = log

𝑝! 𝑥 𝑧 𝑝 𝑧 𝑞"(𝑧|𝑥)
𝑝! 𝑧 𝑥 𝑞"(𝑧|𝑥)

= 𝐸#[log 𝑝!(𝑥|𝑧)] − 𝐸# log
𝑞" 𝑧 𝑥
𝑝 𝑧

+ 𝐸# log
𝑞"(𝑧|𝑥)
𝑝!(𝑧|𝑥)

= 𝐸(~*'((|-)[log 𝑝.(𝑥|𝑧)] − 𝐷/0 𝑞1 𝑧 𝑥 , 𝑝 𝑧 + 𝐷/0(𝑞1 𝑧 𝑥 , 𝑝. 𝑧 𝑥)
KL divergence between prior, and
samples from the encoder network

Slide from Justin Johnson

Variational Autoencoders

log 𝑝!(𝑥) = log
𝑝! 𝑥 𝑧)𝑝(𝑧)
𝑝! 𝑧 𝑥) = log

𝑝! 𝑥 𝑧 𝑝 𝑧 𝑞"(𝑧|𝑥)
𝑝! 𝑧 𝑥 𝑞"(𝑧|𝑥)

= 𝐸#[log 𝑝!(𝑥|𝑧)] − 𝐸# log
𝑞" 𝑧 𝑥
𝑝 𝑧

+ 𝐸# log
𝑞"(𝑧|𝑥)
𝑝!(𝑧|𝑥)

= 𝐸(~*'((|-)[log 𝑝.(𝑥|𝑧)] − 𝐷/0 𝑞1 𝑧 𝑥 , 𝑝 𝑧 + 𝐷/0(𝑞1 𝑧 𝑥 , 𝑝. 𝑧 𝑥)
KL divergence between encoder
and posterior of decoder

Slide from Justin Johnson

Variational Autoencoders

log 𝑝!(𝑥) = log
𝑝! 𝑥 𝑧)𝑝(𝑧)
𝑝! 𝑧 𝑥) = log

𝑝! 𝑥 𝑧 𝑝 𝑧 𝑞"(𝑧|𝑥)
𝑝! 𝑧 𝑥 𝑞"(𝑧|𝑥)

= 𝐸#[log 𝑝!(𝑥|𝑧)] − 𝐸# log
𝑞" 𝑧 𝑥
𝑝 𝑧

+ 𝐸# log
𝑞"(𝑧|𝑥)
𝑝!(𝑧|𝑥)

= 𝐸(~*'((|-)[log 𝑝.(𝑥|𝑧)] − 𝐷/0 𝑞1 𝑧 𝑥 , 𝑝 𝑧 + 𝐷/0(𝑞1 𝑧 𝑥 , 𝑝. 𝑧 𝑥)
KL is >= 0, so dropping this term gives a
lower bound on the data likelihood:

Slide from Justin Johnson

Variational Autoencoders

log 𝑝!(𝑥) = log
𝑝! 𝑥 𝑧)𝑝(𝑧)
𝑝! 𝑧 𝑥) = log

𝑝! 𝑥 𝑧 𝑝 𝑧 𝑞"(𝑧|𝑥)
𝑝! 𝑧 𝑥 𝑞"(𝑧|𝑥)

= 𝐸#[log 𝑝!(𝑥|𝑧)] − 𝐸# log
𝑞" 𝑧 𝑥
𝑝 𝑧

+ 𝐸# log
𝑞"(𝑧|𝑥)
𝑝!(𝑧|𝑥)

= 𝐸(~*'((|-)[log 𝑝.(𝑥|𝑧)] − 𝐷/0 𝑞1 𝑧 𝑥 , 𝑝 𝑧 + 𝐷/0(𝑞1 𝑧 𝑥 , 𝑝. 𝑧 𝑥)

log 𝑝! 𝑥 ≥ 𝐸"~$!("|')[log 𝑝!(𝑥|𝑧)] − 𝐷)* 𝑞+ 𝑧 𝑥 , 𝑝 𝑧

Slide from Justin Johnson

Variational Autoencoders

log 𝑝! 𝑥 ≥𝐸"~$!("|')[log 𝑝!(𝑥|𝑧)] − 𝐷)* 𝑞+ 𝑧 𝑥 , 𝑝 𝑧

Jointly train encoder q and decoder p to maximize
the variational lower bound on the data likelihood
Also called Evidence Lower Bound (ELBo)

𝑝' 𝑥 | 𝑧 = 𝑁(𝜇)|+ , Σ)|+)𝑞(𝑧 | 𝑥 = 𝑁(𝜇+|) , Σ+|))
Encoder Network Decoder Network

Slide from Justin Johnson

Example: Fully-Connected VAE
x: 28x28 image, flattened to 784-dim vector
z: 20-dim vector

x: 784

𝑝' 𝑥 | 𝑧 = 𝑁(𝜇)|+ , Σ)|+)𝑞(𝑧 | 𝑥 = 𝑁(𝜇+|) , Σ+|))
Encoder Network Decoder Network

Linear(784->400)

Linear(400->20) Linear(400->20)

μz|x: 20 ∑z|x: 20

z: 20

Linear(20->400)

Linear(400->768) Linear(400->768)

μx|z: 768 ∑x|z: 768

Slide from Justin Johnson

Variational Autoencoders

Input
Data

𝐸"~$#("|')[log 𝑝)(𝑥|𝑧)] − 𝐷*+ 𝑞, 𝑧 𝑥 , 𝑝 𝑧

Train by maximizing the
variational lower bound

Slide from Justin Johnson

Variational Autoencoders

Input
Data

Encoder

𝐸"~$#("|')[log 𝑝)(𝑥|𝑧)] − 𝐷*+ 𝑞, 𝑧 𝑥 , 𝑝 𝑧

Train by maximizing the
variational lower bound

1. Run input data through encoder to get a
distribution over latent codes

Slide from Justin Johnson

Variational Autoencoders

Input
Data

Encoder

𝐸"~$#("|')[log 𝑝)(𝑥|𝑧)] − 𝐷*+ 𝑞, 𝑧 𝑥 , 𝑝 𝑧

Train by maximizing the
variational lower bound

1. Run input data through encoder to get a
distribution over latent codes

2. Encoder output should match the prior p(z)!

Slide from Justin Johnson

Variational Autoencoders

Input
Data

Encoder

𝐸"~$#("|')[log 𝑝)(𝑥|𝑧)] − 𝐷*+ 𝑞, 𝑧 𝑥 , 𝑝 𝑧

Train by maximizing the
variational lower bound

1. Run input data through encoder to get a
distribution over latent codes

2. Encoder output should match the prior p(z)!

−𝐷!" 𝑞# 𝑧 𝑥 , 𝑝 𝑧 = 4
$
𝑞# 𝑧 𝑥 log

𝑝 𝑧
𝑞# 𝑧 𝑥

𝑑𝑧

= 4
$
𝑁 𝑧; 𝜇%|', Σ%|' log

𝑁 𝑧; 0, 𝐼
𝑁 𝑧; 𝜇%|', Σ%|'

𝑑𝑧

=
1
2
A

()*

+
1 + log Σ%|' (

,
− 𝜇%|' (

,
− Σ%|' (

,

Closed form solution when
𝑞% is diagonal Gaussian and
p is unit Gaussian!
(Assume z has dimension J)

Slide from Justin Johnson

Variational Autoencoders

Sample z from

Input
Data

Latent
code

Encoder

𝐸"~$#("|')[log 𝑝)(𝑥|𝑧)] − 𝐷*+ 𝑞, 𝑧 𝑥 , 𝑝 𝑧

Train by maximizing the
variational lower bound

1. Run input data through encoder to get a
distribution over latent codes

2. Encoder output should match the prior p(z)!
3. Sample code z from encoder output

Slide from Justin Johnson

Variational Autoencoders

Sample z from

Input
Data

Decoder

Latent
code

Encoder

𝐸"~$#("|')[log 𝑝)(𝑥|𝑧)] − 𝐷*+ 𝑞, 𝑧 𝑥 , 𝑝 𝑧

Train by maximizing the
variational lower bound

1. Run input data through encoder to get a
distribution over latent codes

2. Encoder output should match the prior p(z)!
3. Sample code z from encoder output
4. Run sampled code through decoder to get a

distribution over data samples

Slide from Justin Johnson

Variational Autoencoders

Sample z from

Input
Data

Decoder

Latent
code

Encoder

𝐸"~$#("|')[log 𝑝)(𝑥|𝑧)] − 𝐷*+ 𝑞, 𝑧 𝑥 , 𝑝 𝑧

Train by maximizing the
variational lower bound

1. Run input data through encoder to get a
distribution over latent codes

2. Encoder output should match the prior p(z)!
3. Sample code z from encoder output
4. Run sampled code through decoder to get a

distribution over data samples
5. Original input data should be likely under

the distribution output from (4)!

Slide from Justin Johnson

Variational Autoencoders

Sample z from

Sample x from

Input
Data

Decoder

Latent
code

Reconstructed
data

Encoder

𝐸"~$#("|')[log 𝑝)(𝑥|𝑧)] − 𝐷*+ 𝑞, 𝑧 𝑥 , 𝑝 𝑧

Train by maximizing the
variational lower bound

1. Run input data through encoder to get a
distribution over latent codes

2. Encoder output should match the prior p(z)!
3. Sample code z from encoder output
4. Run sampled code through decoder to get a

distribution over data samples
5. Original input data should be likely under

the distribution output from (4)!
6. Can sample a reconstruction from (4)

Slide from Justin Johnson

Variational Autoencoders: Generating Data

Sample z from
prior p(z)

Latent
code

After training we can
generate new data!

1. Sample z from prior p(z)

Slide from Justin Johnson

Variational Autoencoders: Generating Data

Sample z from
prior p(z)

Decoder

Latent
code

After training we can
generate new data!

1. Sample z from prior p(z)
2. Run sampled z through decoder to

get distribution over data x

Slide from Justin Johnson

Variational Autoencoders: Generating Data

Sample z from
prior p(z)

Sample x from
Decoder

Latent
code

Sampled
data

After training we can
generate new data!

1. Sample z from prior p(z)
2. Run sampled z through decoder to

get distribution over data x
3. Sample from distribution in (2) to

generate data

Slide from Justin Johnson

Variational Autoencoders: Generating Data
32x32 CIFAR-10 Labeled Faces in the Wild

Figures from (L) Dirk Kingma et al. 2016; (R) Anders Larsen et al. 2017.

Slide from Justin Johnson

Variational Autoencoders

Vary z1

Vary z2

The diagonal prior on p(z) causes
dimensions of z to be independent

“Disentangling factors of variation”

Kingma and Welling, Auto-Encoding Variational Beyes, ICLR 2014

Slide from Justin Johnson

Variational Autoencoders

Input
Data

Encoder

After training we can edit images

1. Run input data through encoder to get a
distribution over latent codes

Slide from Justin Johnson

Variational Autoencoders

Sample z from

Input
Data

Latent code

Encoder

After training we can edit images

1. Run input data through encoder to get a
distribution over latent codes

2. Sample code z from encoder output

Slide from Justin Johnson

Variational Autoencoders

Sample z from

Input
Data

Latent code

Encoder

After training we can edit images

1. Run input data through encoder to get a
distribution over latent codes

2. Sample code z from encoder output
3. Modify some dimensions of sampled code

Modified code

Slide from Justin Johnson

Variational Autoencoders

Sample z from

Input
Data

Decoder

Latent code

Encoder

After training we can edit images

1. Run input data through encoder to get a
distribution over latent codes

2. Sample code z from encoder output
3. Modify some dimensions of sampled code
4. Run modified z through decoder to get a

distribution over data sample

Modified code

Slide from Justin Johnson

Variational Autoencoders

Sample z from

Sample x from

Input
Data

Decoder

Latent code

Edited
data

Encoder

After training we can edit images

1. Run input data through encoder to get a
distribution over latent codes

2. Sample code z from encoder output
3. Modify some dimensions of sampled code
4. Run modified z through decoder to get a

distribution over data samples
5. Sample new data from (4)

Modified code

Slide from Justin Johnson

Variational Autoencoders

Vary z1

Degree of smile

Vary z2

Head pose

The diagonal prior on p(z) causes
dimensions of z to be independent

“Disentangling factors of variation”

Kingma and Welling, Auto-Encoding Variational Beyes, ICLR 2014

Slide from Justin Johnson

Variational Autoencoders: Image Editing

Kulkarni et al, “Deep Convolutional Inverse Graphics Networks”, NeurIPS 2014

Diffusion Models

(Markovian) Hierarchical Variational Autoencoders

Diffusion Models

A Markovian Hierarchical Variational Autoencoder with three key restrictions

1. The latent dimension is exactly equal to the data dimension

2. The structure of the latent encoder at each timestep is not learned; it is pre-
defined as a linear Gaussian model. In other words, it is a Gaussian
distribution centered around the output of the previous timestep

3. The Gaussian parameters of the latent encoders vary over time in such a way
that the distribution of the latent at final timestep T is a standard Gaussian

Diffusion Models

ELBO for Diffusion Models

ELBO for Diffusion Models

ELBO for Diffusion Models

Computing the Denoising Matching Term

Loss Function

We will assume 𝑝) 𝑥-./ 𝑥-) can be approximated as a Gaussian.

DDPMs: Basic idea

J. Ho et al. Denoising diffusion probabilistic models. NeurIPS 2020
Blog introduction: https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

CVPR 2022 tutorial

Unconditional CIFAR10 sample generation

https://proceedings.neurips.cc/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
https://cvpr2022-tutorial-diffusion-models.github.io/

DDPMs: Basic idea

• Forward process 𝑞 turns images into Gaussian noise
• Reverse process 𝑝 turns noise into images
• Provided the increments of 𝑡 are small enough, 𝑝'(𝑥"&$|𝑥") is

Gaussian and we can train a neural network to estimate the mean
of 𝑥"&$ given 𝑥"

J. Ho et al. Denoising diffusion probabilistic models. NeurIPS 2020

https://proceedings.neurips.cc/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf

DDPMs: Basic idea

J. Ho et al. Denoising diffusion probabilistic models. NeurIPS 2020

• 𝜖!(𝑥" , 𝑡) is the predicted noise component of
image 𝑥" given noise level 𝑡

• Network parameters 𝜃 are updated to
reduce L2 error between actual noise 𝜖 and
predicted noise 𝜖!(𝑥" , 𝑡)

𝑥"

https://proceedings.neurips.cc/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf

DDPMs: Basic idea

J. Ho et al. Denoising diffusion probabilistic models. NeurIPS 2020

https://proceedings.neurips.cc/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf

Alternate viewpoint: Score-based generative modeling
• It can be shown that 𝜖' 𝑥" , 𝑡 ≈ −∇)! log 𝑞(𝑥"), where ∇)! log 𝑞(𝑥")

is the score function of the (noisy) data distribution
• To sample from the original data density 𝑞(𝑥C), we can use annealed

Langevin dynamics, i.e., start by sampling from noise-perturbed
versions of the data distribution and gradually reduce the amount of
noise

https://yang-song.net/blog/2021/score/
Y. Song and S. Ermon. Generative Modeling by Estimating Gradients of the Data Distribution. NeurIPS 2019

Original density Medium noise Maximum noise

https://yang-song.net/blog/2021/score/
https://arxiv.org/pdf/1907.05600.pdf

DDPMs: Implementation
• U-Net architectures are typically used to represent 𝜖'(𝑥" , 𝑡)
• Bells and whistles: residual blocks, self-attention

• Time is encoded using sinusoidal positional embeddings or random Fourier features, fed into the U-Net using
addition or adaptive normalization

Source: CVPR 2002 DM tutorial

https://cvpr2022-tutorial-diffusion-models.github.io/

