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Supervised vs Unsupervised Learning
Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, regression, 
object detection, semantic 
segmentation, image captioning, etc.

Cat

Classification

This image is CC0 public domain

https://pixabay.com/en/kitten-cute-feline-kitty-domestic-1246693/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Supervised vs Unsupervised Learning
Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, regression, 
object detection, semantic 
segmentation, image captioning, etc.

DOG, DOG, CAT
This image is CC0 public domain

Object Detection

https://pixabay.com/en/pets-christmas-dogs-cat-962215/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Supervised vs Unsupervised Learning
Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, regression, 
object detection, semantic 
segmentation, image captioning, etc.

Semantic Segmentation

GRASS, CAT, TREE, SKY
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Supervised vs Unsupervised Learning
Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, regression, 
object detection, semantic 
segmentation, image captioning, etc.

Image captioning

A cat sitting on a 
suitcase on the floor

Caption generated using neuraltalk2
Image is CC0 Public domain.

https://github.com/karpathy/neuraltalk2
https://pixabay.com/en/luggage-antique-cat-1643010/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Supervised vs Unsupervised Learning
Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, regression, 
object detection, semantic 
segmentation, image captioning, etc.

Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying 
hidden structure of the data

Examples: Clustering, 
dimensionality reduction, feature 
learning, density estimation, etc.
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Supervised vs Unsupervised Learning
Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying 
hidden structure of the data

Examples: Clustering, 
dimensionality reduction, feature 
learning, density estimation, etc.

Clustering
(e.g. K-Means)

This image is CC0 public domain

https://commons.wikimedia.org/wiki/File:ClusterAnalysis_Mouse.svg
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Supervised vs Unsupervised Learning
Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying 
hidden structure of the data

Examples: Clustering, 
dimensionality reduction, feature 
learning, density estimation, etc.

Dimensionality Reduction
(e.g. Principal Components Analysis)

This image from Matthias Scholz  is CC0 public domain

3D 2D

http://phdthesis-bioinformatics-maxplanckinstitute-molecularplantphys.matthias-scholz.de/fig_pca_illu3d.png
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Supervised vs Unsupervised Learning
Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying 
hidden structure of the data

Examples: Clustering, 
dimensionality reduction, feature 
learning, density estimation, etc.

Feature Learning
(e.g. autoencoders)



Slide from Justin Johnson

Supervised vs Unsupervised Learning
Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying 
hidden structure of the data

Examples: Clustering, 
dimensionality reduction, feature 
learning, density estimation, etc.

Learning the distribution
e.g. density estimation

Images left and right are CC0 public domain

https://commons.wikimedia.org/wiki/File:Bivariate_example.png
https://www.flickr.com/photos/omegatron/8533520357
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Supervised vs Unsupervised Learning
Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying 
hidden structure of the data

Examples: Clustering, 
dimensionality reduction, feature 
learning, density estimation, etc.

Learning the distribution
e.g. sampling from it

Images left and right are CC0 public domain

https://commons.wikimedia.org/wiki/File:Bivariate_example.png
https://www.flickr.com/photos/omegatron/8533520357
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Supervised vs Unsupervised Learning
Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, regression, 
object detection, semantic 
segmentation, image captioning, etc.

Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying 
hidden structure of the data

Examples: Clustering, 
dimensionality reduction, feature 
learning, density estimation, etc.



Types of Generative 
Models

Figure from Probabilistic Machine Learning: 
Advanced Topics, adapted from 
https://lilianweng.github.io/posts/2021-07-11-
diffusion-models/

https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/


Application of Generative Models (Image in-painting)



Application of Generative Models (As a prior)

Dream Fusion: Text-to-3D Using 2D Diffusion

https://arxiv.org/pdf/2209.14988.pdf


Application of Generative Models (As a prior)

Dream Fusion: Text-to-3D Using 2D Diffusion

https://arxiv.org/pdf/2209.14988.pdf


Application of Generative Models (Image generation)



Variational Autoencoders
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Variational Autoencoders

PixelRNN / PixelCNN explicitly parameterizes density function with a neural 
network, so we can train to maximize likelihood of training data:

Variational Autoencoders (VAE) define an intractable density that we 
cannot explicitly compute or optimize

But we will be able to directly optimize a lower bound on the density

p!(𝑥) =&
"#$

%

𝑝! 𝑥" 𝑥$, … , 𝑥"&$)



Slide from Justin Johnson

Variational Autoencoders
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(Regular, non-variational) Autoencoders
Unsupervised method for learning feature vectors from raw data x, without any labels

Encoder

Input data

Features

Originally: Linear + nonlinearity (sigmoid)
Later: Deep, fully-connected
Later: ReLU CNN

Features should extract useful 
information (maybe object identities, 
properties, scene type, etc) that we 
can use for downstream tasks

Input Data



Slide from Justin Johnson

(Regular, non-variational) Autoencoders
Problem: How can we learn this feature transform from raw data?

Encoder

Input data

Features

Originally: Linear + nonlinearity (sigmoid)
Later: Deep, fully-connected
Later: ReLU CNN

Features should extract useful 
information (maybe object identities, 
properties, scene type, etc) that we 
can use for downstream tasks
But we can’t observe features!

Input Data
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(Regular, non-variational) Autoencoders
Problem: How can we learn this feature transform from raw data?

Encoder

Input data

Features

Idea: Use the features to reconstruct the input data with a decoder
“Autoencoding” = encoding itself

Decoder

Reconstructed 
input data

Originally: Linear + 
nonlinearity (sigmoid)
Later: Deep, fully-connected
Later: ReLU CNN (upconv)

Input Data
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(Regular, non-variational) Autoencoders

Encoder

Input data

Features

Loss: L2 distance between input and reconstructed data. 

Decoder

Reconstructed 
input data

Loss Function

!𝑥 − 𝑥 !
!

Input Data

Does not use any 
labels! Just raw data!
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(Regular, non-variational) Autoencoders

Encoder

Input data

Features

Loss: L2 distance between input and reconstructed data. 

Decoder

Reconstructed 
input data

Loss Function

!𝑥 − 𝑥 !
!

Input Data

Does not use any 
labels! Just raw data!

Reconstructed data

Decoder:
4 tconv layers
Encoder:
4 conv layers
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(Regular, non-variational) Autoencoders

Encoder

Input data

Features

Loss: L2 distance between input and reconstructed data. 

Decoder

Reconstructed 
input data

Loss Function

!𝑥 − 𝑥 !
!

Input Data

Does not use any 
labels! Just raw data!

Reconstructed data

Decoder:
4 tconv layers
Encoder:
4 conv layers

Features need to be 
lower dimensional
than the data
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(Regular, non-variational) Autoencoders

Encoder

Input data

Features

After training, throw away decoder and use encoder for a downstream task

Decoder

Reconstructed 
input data

After training, 
throw away decoder
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(Regular, non-variational) Autoencoders

Encoder

Input data

Features

After training, throw away decoder and use encoder for a downstream task

Classifier

Predicted Label

Loss function 
(Softmax, etc)

Fine-tune
encoder
jointly with
classifier

Encoder can be 
used to initialize a 
supervised model

plane
dog deer

bird
truck

Train for final task 
(sometimes with 

small data)
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(Regular, non-variational) Autoencoders

Encoder

Input data

Features

Autoencoders learn latent features for data without any labels!
Can use features to initialize a supervised model
Not probabilistic: No way to sample new data from learned model

Decoder

Reconstructed 
input data
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Variational Autoencoders

Kingma and Welling, Auto-Encoding Variational Beyes, ICLR 2014
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Variational Autoencoders

Probabilistic spin on autoencoders: 
1. Learn latent features z from raw data
2. Sample from the model to generate new data
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Variational Autoencoders

Assume training data 𝑥 !
!"#
$

is 
generated from unobserved (latent) 
representation z

Probabilistic spin on autoencoders: 
1. Learn latent features z from raw data
2. Sample from the model to generate new data

Intuition: x is an image, z is latent 
factors used to generate x:
attributes, orientation, etc. 
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Variational Autoencoders

Probabilistic spin on autoencoders: 
1. Learn latent features z from raw data
2. Sample from the model to generate new data

Sample z 
from prior

Sample from 
conditional

After training, sample new data like this: Intuition: x is an image, z is latent 
factors used to generate x:
attributes, orientation, etc. 

Assume training data 𝑥 !
!"#
$

is 
generated from unobserved (latent) 
representation z
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Variational Autoencoders

Probabilistic spin on autoencoders: 
1. Learn latent features z from raw data
2. Sample from the model to generate new data

Sample z 
from prior

Sample from 
conditional

After training, sample new data like this: Intuition: x is an image, z is latent 
factors used to generate x:
attributes, orientation, etc. 

Assume simple prior p(z), e.g. Gaussian

Assume training data 𝑥 !
!"#
$

is 
generated from unobserved (latent) 
representation z
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Variational Autoencoders

Probabilistic spin on autoencoders: 
1. Learn latent features z from raw data
2. Sample from the model to generate new data

Sample z 
from prior

Sample from 
conditional

After training, sample new data like this: Intuition: x is an image, z is latent 
factors used to generate x:
attributes, orientation, etc. 

Assume simple prior p(z), e.g. Gaussian

Represent p(x|z) with a neural network
(Similar to decoder from autencoder)

Assume training data 𝑥 !
!"#
$

is 
generated from unobserved (latent) 
representation z
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Variational Autoencoders

Sample z 
from prior

Sample from 
conditional

Intuition: x is an image, z is latent 
factors used to generate x:
attributes, orientation, etc. 

Assume simple prior p(z), e.g. Gaussian

Represent p(x|z) with a neural network
(Similar to decoder from autencoder)

Decoder must be probabilistic:
Decoder inputs z, outputs mean μx|z
and (diagonal) covariance ∑x|z

Sample x from Gaussian with mean 
μx|z and (diagonal) covariance ∑x|z

Assume training data 𝑥 !
!"#
$

is 
generated from unobserved (latent) 
representation z
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Variational Autoencoders

Sample z 
from prior

Sample from 
conditional

Decoder must be probabilistic:
Decoder inputs z, outputs mean μx|z
and (diagonal) covariance ∑x|z

Sample x from Gaussian with mean 
μx|z and (diagonal) covariance ∑x|z How to train this model?

Basic idea: maximize likelihood of data

If we could observe the z for each x, then 
could train a conditional generative model
p(x|z)

Assume training data 𝑥 !
!"#
$

is 
generated from unobserved (latent) 
representation z
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Variational Autoencoders

Sample z 
from prior

Sample from 
conditional

Decoder must be probabilistic:
Decoder inputs z, outputs mean μx|z
and (diagonal) covariance ∑x|z

Sample x from Gaussian with mean 
μx|z and (diagonal) covariance ∑x|z How to train this model?

Basic idea: maximize likelihood of data

We don’t observe z, so need to marginalize:

𝑝' 𝑥 = *𝑝' 𝑥, 𝑧 𝑑𝑧 = *𝑝' 𝑥 𝑧 𝑝' 𝑧 𝑑𝑧

Assume training data 𝑥 !
!"#
$

is 
generated from unobserved (latent) 
representation z
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Variational Autoencoders

Sample z 
from prior

Sample from 
conditional

Decoder must be probabilistic:
Decoder inputs z, outputs mean μx|z
and (diagonal) covariance ∑x|z

Sample x from Gaussian with mean 
μx|z and (diagonal) covariance ∑x|z How to train this model?

Basic idea: maximize likelihood of data

We don’t observe z, so need to marginalize:

𝑝' 𝑥 = *𝑝' 𝑥, 𝑧 𝑑𝑧 = *𝑝' 𝑥 𝑧 𝑝' 𝑧 𝑑𝑧

Ok, can compute this with decoder network

Assume training data 𝑥 !
!"#
$

is 
generated from unobserved (latent) 
representation z
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Variational Autoencoders

Sample z 
from prior

Sample from 
conditional

Decoder must be probabilistic:
Decoder inputs z, outputs mean μx|z
and (diagonal) covariance ∑x|z

Sample x from Gaussian with mean 
μx|z and (diagonal) covariance ∑x|z How to train this model?

Basic idea: maximize likelihood of data

We don’t observe z, so need to marginalize:

𝑝' 𝑥 = *𝑝' 𝑥, 𝑧 𝑑𝑧 = *𝑝' 𝑥 𝑧 𝑝' 𝑧 𝑑𝑧

Ok, we assumed Gaussian prior for z

Assume training data 𝑥 !
!"#
$

is 
generated from unobserved (latent) 
representation z
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Variational Autoencoders

Sample z 
from prior

Sample from 
conditional

Decoder must be probabilistic:
Decoder inputs z, outputs mean μx|z
and (diagonal) covariance ∑x|z

Sample x from Gaussian with mean 
μx|z and (diagonal) covariance ∑x|z How to train this model?

Basic idea: maximize likelihood of data

We don’t observe z, so need to marginalize:

𝑝' 𝑥 = *𝑝' 𝑥, 𝑧 𝑑𝑧 = *𝑝' 𝑥 𝑧 𝑝' 𝑧 𝑑𝑧

Problem: Impossible to integrate over all z!

Assume training data 𝑥 !
!"#
$

is 
generated from unobserved (latent) 
representation z



Slide from Justin Johnson

Variational Autoencoders

Sample z 
from prior

Sample from 
conditional

Decoder must be probabilistic:
Decoder inputs z, outputs mean μx|z
and (diagonal) covariance ∑x|z

Sample x from Gaussian with mean 
μx|z and (diagonal) covariance ∑x|z How to train this model?

Basic idea: maximize likelihood of data

Another idea: Try Bayes’ Rule:

Recall 𝑝 𝑥, 𝑧 = 𝑝 𝑥 𝑧 𝑝 𝑧 = 𝑝 𝑧 𝑥 𝑝 𝑥

𝑝' 𝑥 =
𝑝' 𝑥 𝑧)𝑝' 𝑧
𝑝' 𝑧 𝑥)

Assume training data 𝑥 !
!"#
$

is 
generated from unobserved (latent) 
representation z
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Variational Autoencoders

Sample z 
from prior

Sample from 
conditional

Decoder must be probabilistic:
Decoder inputs z, outputs mean μx|z
and (diagonal) covariance ∑x|z

Sample x from Gaussian with mean 
μx|z and (diagonal) covariance ∑x|z How to train this model?

Basic idea: maximize likelihood of data

Another idea: Try Bayes’ Rule:

Recall 𝑝 𝑥, 𝑧 = 𝑝 𝑥 𝑧 𝑝 𝑧 = 𝑝 𝑧 𝑥 𝑝 𝑥

Ok, compute with 
decoder network

𝑝' 𝑥 =
𝑝' 𝑥 𝑧)𝑝' 𝑧
𝑝' 𝑧 𝑥)

Assume training data 𝑥 !
!"#
$

is 
generated from unobserved (latent) 
representation z
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Variational Autoencoders

Sample z 
from prior

Sample from 
conditional

Decoder must be probabilistic:
Decoder inputs z, outputs mean μx|z
and (diagonal) covariance ∑x|z

Sample x from Gaussian with mean 
μx|z and (diagonal) covariance ∑x|z How to train this model?

Basic idea: maximize likelihood of data

Another idea: Try Bayes’ Rule:

Recall 𝑝 𝑥, 𝑧 = 𝑝 𝑥 𝑧 𝑝 𝑧 = 𝑝 𝑧 𝑥 𝑝 𝑥

Ok, we assumed 
Gaussian prior

𝑝' 𝑥 =
𝑝' 𝑥 𝑧)𝑝' 𝑧
𝑝' 𝑧 𝑥)

Assume training data 𝑥 !
!"#
$

is 
generated from unobserved (latent) 
representation z
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Variational Autoencoders

Sample z 
from prior

Sample from 
conditional

Decoder must be probabilistic:
Decoder inputs z, outputs mean μx|z
and (diagonal) covariance ∑x|z

Sample x from Gaussian with mean 
μx|z and (diagonal) covariance ∑x|z How to train this model?

Basic idea: maximize likelihood of data

Another idea: Try Bayes’ Rule:

Recall 𝑝 𝑥, 𝑧 = 𝑝 𝑥 𝑧 𝑝 𝑧 = 𝑝 𝑧 𝑥 𝑝 𝑥

Problem: No way 
to compute this!𝑝' 𝑥 =

𝑝' 𝑥 𝑧)𝑝' 𝑧
𝑝' 𝑧 𝑥)

Assume training data 𝑥 !
!"#
$

is 
generated from unobserved (latent) 
representation z
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Variational Autoencoders

Sample z 
from prior

Sample from 
conditional

Decoder must be probabilistic:
Decoder inputs z, outputs mean μx|z
and (diagonal) covariance ∑x|z

Sample x from Gaussian with mean 
μx|z and (diagonal) covariance ∑x|z How to train this model?

Basic idea: maximize likelihood of data

Another idea: Try Bayes’ Rule:

𝑝' 𝑥 =
𝑝' 𝑥 𝑧)𝑝' 𝑧
𝑝' 𝑧 𝑥)

Recall 𝑝 𝑥, 𝑧 = 𝑝 𝑥 𝑧 𝑝 𝑧 = 𝑝 𝑧 𝑥 𝑝 𝑥

Solution: Train 
another network 

(encoder) that learns 
𝑞! 𝑧 𝑥) ≈ 𝑝" 𝑧 𝑥)

Assume training data 𝑥 !
!"#
$

is 
generated from unobserved (latent) 
representation z
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Variational Autoencoders

Sample z 
from prior

Sample from 
conditional

Decoder must be probabilistic:
Decoder inputs z, outputs mean μx|z
and (diagonal) covariance ∑x|z

Sample x from Gaussian with mean 
μx|z and (diagonal) covariance ∑x|z How to train this model?

Basic idea: maximize likelihood of data

Another idea: Try Bayes’ Rule:

𝑝' 𝑥 =
𝑝' 𝑥 𝑧)𝑝' 𝑧
𝑝' 𝑧 𝑥)

≈
𝑝' 𝑥 𝑧)𝑝' 𝑧
𝑞( 𝑧 𝑥)

Recall 𝑝 𝑥, 𝑧 = 𝑝 𝑥 𝑧 𝑝 𝑧 = 𝑝 𝑧 𝑥 𝑝 𝑥

Use encoder to compute 𝑞% 𝑧 𝑥) ≈ 𝑝& 𝑧 𝑥)

Assume training data 𝑥 !
!"#
$

is 
generated from unobserved (latent) 
representation z
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Variational Autoencoders

𝑝' 𝑥 | 𝑧 = 𝑁(𝜇)|+ , Σ)|+) 𝑞( 𝑧 | 𝑥 = 𝑁(𝜇+|) , Σ+|))

Decoder network inputs 
latent code z, gives 
distribution over data x

Encoder network inputs 
data x, gives distribution 
over latent codes z

If we can ensure that 
𝑞( 𝑧 𝑥) ≈ 𝑝' 𝑧 𝑥), 

then we can approximate 

𝑝' 𝑥 ≈
𝑝' 𝑥 𝑧)𝑝(𝑧)
𝑞( 𝑧 𝑥)

Idea: Jointly train both 
encoder and decoder
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Variational Autoencoders

log 𝑝!(𝑥) = log
𝑝! 𝑥 𝑧)𝑝(𝑧)
𝑝! 𝑧 𝑥)

Bayes’ Rule
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Variational Autoencoders

log 𝑝!(𝑥) = log
𝑝! 𝑥 𝑧)𝑝(𝑧)
𝑝! 𝑧 𝑥) = log

𝑝! 𝑥 𝑧 𝑝 𝑧 𝑞"(𝑧|𝑥)
𝑝! 𝑧 𝑥 𝑞"(𝑧|𝑥)

Multiply top and bottom by qΦ(z|x)
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Variational Autoencoders

log 𝑝!(𝑥) = log
𝑝! 𝑥 𝑧)𝑝(𝑧)
𝑝! 𝑧 𝑥) = log

𝑝! 𝑥 𝑧 𝑝 𝑧 𝑞"(𝑧|𝑥)
𝑝! 𝑧 𝑥 𝑞"(𝑧|𝑥)

= log 𝑝! 𝑥 𝑧 − log
𝑞" 𝑧|𝑥
𝑝(𝑧) + log

𝑞"(𝑧|𝑥)
𝑝!(𝑧|𝑥)

Split up using rules for logarithms
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Variational Autoencoders

log 𝑝!(𝑥) = log
𝑝! 𝑥 𝑧)𝑝(𝑧)
𝑝! 𝑧 𝑥) = log

𝑝! 𝑥 𝑧 𝑝 𝑧 𝑞"(𝑧|𝑥)
𝑝! 𝑧 𝑥 𝑞"(𝑧|𝑥)

= log 𝑝! 𝑥 𝑧 − log
𝑞" 𝑧|𝑥
𝑝(𝑧) + log

𝑞"(𝑧|𝑥)
𝑝!(𝑧|𝑥)

c

c

c

Split up using rules for logarithms
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Variational Autoencoders

log 𝑝!(𝑥) = log
𝑝! 𝑥 𝑧)𝑝(𝑧)
𝑝! 𝑧 𝑥) = log

𝑝! 𝑥 𝑧 𝑝 𝑧 𝑞"(𝑧|𝑥)
𝑝! 𝑧 𝑥 𝑞"(𝑧|𝑥)

= log 𝑝! 𝑥 𝑧 − log
𝑞" 𝑧|𝑥
𝑝(𝑧) + log

𝑞"(𝑧|𝑥)
𝑝!(𝑧|𝑥)

log 𝑝! 𝑥 = 𝐸#~%'(#|() log 𝑝!(𝑥)
We can wrap in an 
expectation since it 
doesn’t depend on z
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Variational Autoencoders

log 𝑝! 𝑥 = 𝐸#~%'(#|() log 𝑝!(𝑥)
We can wrap in an 
expectation since it 
doesn’t depend on z

log 𝑝!(𝑥) = log
𝑝! 𝑥 𝑧)𝑝(𝑧)
𝑝! 𝑧 𝑥) = log

𝑝! 𝑥 𝑧 𝑝 𝑧 𝑞"(𝑧|𝑥)
𝑝! 𝑧 𝑥 𝑞"(𝑧|𝑥)

= 𝐸#[log 𝑝!(𝑥|𝑧)] − 𝐸# log
𝑞" 𝑧 𝑥
𝑝 𝑧

+ 𝐸# log
𝑞"(𝑧|𝑥)
𝑝!(𝑧|𝑥)
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Variational Autoencoders

log 𝑝!(𝑥) = log
𝑝! 𝑥 𝑧)𝑝(𝑧)
𝑝! 𝑧 𝑥) = log

𝑝! 𝑥 𝑧 𝑝 𝑧 𝑞"(𝑧|𝑥)
𝑝! 𝑧 𝑥 𝑞"(𝑧|𝑥)

= 𝐸#[log 𝑝!(𝑥|𝑧)] − 𝐸# log
𝑞" 𝑧 𝑥
𝑝 𝑧

+ 𝐸# log
𝑞"(𝑧|𝑥)
𝑝!(𝑧|𝑥)

= 𝐸(~*'((|-)[log 𝑝.(𝑥|𝑧)] − 𝐷/0 𝑞1 𝑧 𝑥 , 𝑝 𝑧 + 𝐷/0(𝑞1 𝑧 𝑥 , 𝑝. 𝑧 𝑥 )

Data reconstruction



Slide from Justin Johnson

Variational Autoencoders

log 𝑝!(𝑥) = log
𝑝! 𝑥 𝑧)𝑝(𝑧)
𝑝! 𝑧 𝑥) = log

𝑝! 𝑥 𝑧 𝑝 𝑧 𝑞"(𝑧|𝑥)
𝑝! 𝑧 𝑥 𝑞"(𝑧|𝑥)

= 𝐸#[log 𝑝!(𝑥|𝑧)] − 𝐸# log
𝑞" 𝑧 𝑥
𝑝 𝑧

+ 𝐸# log
𝑞"(𝑧|𝑥)
𝑝!(𝑧|𝑥)

= 𝐸(~*'((|-)[log 𝑝.(𝑥|𝑧)] − 𝐷/0 𝑞1 𝑧 𝑥 , 𝑝 𝑧 + 𝐷/0(𝑞1 𝑧 𝑥 , 𝑝. 𝑧 𝑥 )
KL divergence between prior, and 
samples from the encoder network
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Variational Autoencoders

log 𝑝!(𝑥) = log
𝑝! 𝑥 𝑧)𝑝(𝑧)
𝑝! 𝑧 𝑥) = log

𝑝! 𝑥 𝑧 𝑝 𝑧 𝑞"(𝑧|𝑥)
𝑝! 𝑧 𝑥 𝑞"(𝑧|𝑥)

= 𝐸#[log 𝑝!(𝑥|𝑧)] − 𝐸# log
𝑞" 𝑧 𝑥
𝑝 𝑧

+ 𝐸# log
𝑞"(𝑧|𝑥)
𝑝!(𝑧|𝑥)

= 𝐸(~*'((|-)[log 𝑝.(𝑥|𝑧)] − 𝐷/0 𝑞1 𝑧 𝑥 , 𝑝 𝑧 + 𝐷/0(𝑞1 𝑧 𝑥 , 𝑝. 𝑧 𝑥 )
KL divergence between encoder 
and posterior of decoder
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Variational Autoencoders

log 𝑝!(𝑥) = log
𝑝! 𝑥 𝑧)𝑝(𝑧)
𝑝! 𝑧 𝑥) = log

𝑝! 𝑥 𝑧 𝑝 𝑧 𝑞"(𝑧|𝑥)
𝑝! 𝑧 𝑥 𝑞"(𝑧|𝑥)

= 𝐸#[log 𝑝!(𝑥|𝑧)] − 𝐸# log
𝑞" 𝑧 𝑥
𝑝 𝑧

+ 𝐸# log
𝑞"(𝑧|𝑥)
𝑝!(𝑧|𝑥)

= 𝐸(~*'((|-)[log 𝑝.(𝑥|𝑧)] − 𝐷/0 𝑞1 𝑧 𝑥 , 𝑝 𝑧 + 𝐷/0(𝑞1 𝑧 𝑥 , 𝑝. 𝑧 𝑥 )
KL is >= 0, so dropping this term gives a 
lower bound on the data likelihood:
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Variational Autoencoders

log 𝑝!(𝑥) = log
𝑝! 𝑥 𝑧)𝑝(𝑧)
𝑝! 𝑧 𝑥) = log

𝑝! 𝑥 𝑧 𝑝 𝑧 𝑞"(𝑧|𝑥)
𝑝! 𝑧 𝑥 𝑞"(𝑧|𝑥)

= 𝐸#[log 𝑝!(𝑥|𝑧)] − 𝐸# log
𝑞" 𝑧 𝑥
𝑝 𝑧

+ 𝐸# log
𝑞"(𝑧|𝑥)
𝑝!(𝑧|𝑥)

= 𝐸(~*'((|-)[log 𝑝.(𝑥|𝑧)] − 𝐷/0 𝑞1 𝑧 𝑥 , 𝑝 𝑧 + 𝐷/0(𝑞1 𝑧 𝑥 , 𝑝. 𝑧 𝑥 )

log 𝑝! 𝑥 ≥ 𝐸"~$!("|')[log 𝑝!(𝑥|𝑧)] − 𝐷)* 𝑞+ 𝑧 𝑥 , 𝑝 𝑧
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Variational Autoencoders

log 𝑝! 𝑥 ≥𝐸"~$!("|')[log 𝑝!(𝑥|𝑧)] − 𝐷)* 𝑞+ 𝑧 𝑥 , 𝑝 𝑧

Jointly train encoder q and decoder p to maximize 
the variational lower bound on the data likelihood
Also called Evidence Lower Bound (ELBo)

𝑝' 𝑥 | 𝑧 = 𝑁(𝜇)|+ , Σ)|+)𝑞( 𝑧 | 𝑥 = 𝑁(𝜇+|) , Σ+|))
Encoder Network Decoder Network
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Example: Fully-Connected VAE
x: 28x28 image, flattened to 784-dim vector
z: 20-dim vector

x: 784

𝑝' 𝑥 | 𝑧 = 𝑁(𝜇)|+ , Σ)|+)𝑞( 𝑧 | 𝑥 = 𝑁(𝜇+|) , Σ+|))
Encoder Network Decoder Network

Linear(784->400)

Linear(400->20) Linear(400->20)

μz|x: 20 ∑z|x: 20

z: 20

Linear(20->400)

Linear(400->768) Linear(400->768)

μx|z: 768 ∑x|z: 768
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Variational Autoencoders

Input 
Data

𝐸"~$#("|')[log 𝑝)(𝑥|𝑧)] − 𝐷*+ 𝑞, 𝑧 𝑥 , 𝑝 𝑧

Train by maximizing the 
variational lower bound
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Variational Autoencoders

Input 
Data

Encoder

𝐸"~$#("|')[log 𝑝)(𝑥|𝑧)] − 𝐷*+ 𝑞, 𝑧 𝑥 , 𝑝 𝑧

Train by maximizing the 
variational lower bound

1. Run input data through encoder to get a 
distribution over latent codes
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Variational Autoencoders

Input 
Data

Encoder

𝐸"~$#("|')[log 𝑝)(𝑥|𝑧)] − 𝐷*+ 𝑞, 𝑧 𝑥 , 𝑝 𝑧

Train by maximizing the 
variational lower bound

1. Run input data through encoder to get a 
distribution over latent codes

2. Encoder output should match the prior p(z)!
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Variational Autoencoders

Input 
Data

Encoder

𝐸"~$#("|')[log 𝑝)(𝑥|𝑧)] − 𝐷*+ 𝑞, 𝑧 𝑥 , 𝑝 𝑧

Train by maximizing the 
variational lower bound

1. Run input data through encoder to get a 
distribution over latent codes

2. Encoder output should match the prior p(z)!

−𝐷!" 𝑞# 𝑧 𝑥 , 𝑝 𝑧 = 4
$
𝑞# 𝑧 𝑥 log

𝑝 𝑧
𝑞# 𝑧 𝑥

𝑑𝑧

= 4
$
𝑁 𝑧; 𝜇%|', Σ%|' log

𝑁 𝑧; 0, 𝐼
𝑁 𝑧; 𝜇%|', Σ%|'

𝑑𝑧

=
1
2
A

()*

+
1 + log Σ%|' (

,
− 𝜇%|' (

,
− Σ%|' (

,

Closed form solution when 
𝑞% is diagonal Gaussian and 
p is unit Gaussian! 
(Assume z has dimension J)
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Variational Autoencoders

Sample z from

Input 
Data

Latent 
code

Encoder

𝐸"~$#("|')[log 𝑝)(𝑥|𝑧)] − 𝐷*+ 𝑞, 𝑧 𝑥 , 𝑝 𝑧

Train by maximizing the 
variational lower bound

1. Run input data through encoder to get a 
distribution over latent codes

2. Encoder output should match the prior p(z)!
3. Sample code z from encoder output
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Variational Autoencoders

Sample z from

Input 
Data

Decoder

Latent 
code

Encoder

𝐸"~$#("|')[log 𝑝)(𝑥|𝑧)] − 𝐷*+ 𝑞, 𝑧 𝑥 , 𝑝 𝑧

Train by maximizing the 
variational lower bound

1. Run input data through encoder to get a 
distribution over latent codes

2. Encoder output should match the prior p(z)!
3. Sample code z from encoder output
4. Run sampled code through decoder to get a 

distribution over data samples
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Variational Autoencoders

Sample z from

Input 
Data

Decoder

Latent 
code

Encoder

𝐸"~$#("|')[log 𝑝)(𝑥|𝑧)] − 𝐷*+ 𝑞, 𝑧 𝑥 , 𝑝 𝑧

Train by maximizing the 
variational lower bound

1. Run input data through encoder to get a 
distribution over latent codes

2. Encoder output should match the prior p(z)!
3. Sample code z from encoder output
4. Run sampled code through decoder to get a 

distribution over data samples
5. Original input data should be likely under 

the distribution output from (4)!
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Variational Autoencoders

Sample z from

Sample x from

Input 
Data

Decoder

Latent 
code

Reconstructed 
data

Encoder

𝐸"~$#("|')[log 𝑝)(𝑥|𝑧)] − 𝐷*+ 𝑞, 𝑧 𝑥 , 𝑝 𝑧

Train by maximizing the 
variational lower bound

1. Run input data through encoder to get a 
distribution over latent codes

2. Encoder output should match the prior p(z)!
3. Sample code z from encoder output
4. Run sampled code through decoder to get a 

distribution over data samples
5. Original input data should be likely under 

the distribution output from (4)!
6. Can sample a reconstruction from (4)
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Variational Autoencoders: Generating Data

Sample z from 
prior p(z)

Latent 
code

After training we can 
generate new data!

1. Sample z from prior p(z)
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Variational Autoencoders: Generating Data

Sample z from 
prior p(z)

Decoder

Latent 
code

After training we can 
generate new data!

1. Sample z from prior p(z)
2. Run sampled z through decoder to 

get distribution over data x
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Variational Autoencoders: Generating Data

Sample z from 
prior p(z)

Sample x from
Decoder

Latent 
code

Sampled 
data

After training we can 
generate new data!

1. Sample z from prior p(z)
2. Run sampled z through decoder to 

get distribution over data x
3. Sample from distribution in (2) to 

generate data
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Variational Autoencoders: Generating Data
32x32 CIFAR-10 Labeled Faces in the Wild

Figures from (L) Dirk Kingma et al. 2016; (R) Anders Larsen et al. 2017. 
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Variational Autoencoders

Vary z1

Vary z2

The diagonal prior on p(z) causes 
dimensions of z to be independent

“Disentangling factors of variation”

Kingma and Welling, Auto-Encoding Variational Beyes, ICLR 2014
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Variational Autoencoders

Input 
Data

Encoder

After training we can edit images

1. Run input data through encoder to get a 
distribution over latent codes
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Variational Autoencoders

Sample z from

Input 
Data

Latent code

Encoder

After training we can edit images

1. Run input data through encoder to get a 
distribution over latent codes

2. Sample code z from encoder output



Slide from Justin Johnson

Variational Autoencoders

Sample z from

Input 
Data

Latent code

Encoder

After training we can edit images

1. Run input data through encoder to get a 
distribution over latent codes

2. Sample code z from encoder output
3. Modify some dimensions of sampled code

Modified code
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Variational Autoencoders

Sample z from

Input 
Data

Decoder

Latent code

Encoder

After training we can edit images

1. Run input data through encoder to get a 
distribution over latent codes

2. Sample code z from encoder output
3. Modify some dimensions of sampled code
4. Run modified z through decoder to get a 

distribution over data sample

Modified code
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Variational Autoencoders

Sample z from

Sample x from

Input 
Data

Decoder

Latent code

Edited 
data

Encoder

After training we can edit images

1. Run input data through encoder to get a 
distribution over latent codes

2. Sample code z from encoder output
3. Modify some dimensions of sampled code
4. Run modified z through decoder to get a 

distribution over data samples
5. Sample new data from (4)

Modified code
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Variational Autoencoders

Vary z1

Degree of smile

Vary z2

Head pose

The diagonal prior on p(z) causes 
dimensions of z to be independent

“Disentangling factors of variation”

Kingma and Welling, Auto-Encoding Variational Beyes, ICLR 2014
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Variational Autoencoders: Image Editing

Kulkarni et al, “Deep Convolutional Inverse Graphics Networks”, NeurIPS 2014



Diffusion Models



(Markovian) Hierarchical Variational Autoencoders



Diffusion Models

A Markovian Hierarchical Variational Autoencoder with three key restrictions

1. The latent dimension is exactly equal to the data dimension 

2. The structure of the latent encoder at each timestep is not learned; it is pre-
defined as a linear Gaussian model. In other words, it is a Gaussian 
distribution centered around the output of the previous timestep 

3. The Gaussian parameters of the latent encoders vary over time in such a way 
that the distribution of the latent at final timestep T is a standard Gaussian



Diffusion Models



ELBO for Diffusion Models



ELBO for Diffusion Models



ELBO for Diffusion Models



Computing the Denoising Matching Term



Loss Function

We will assume 𝑝) 𝑥-./ 𝑥-) can be approximated as a Gaussian.



DDPMs: Basic idea

J. Ho et al. Denoising diffusion probabilistic models. NeurIPS 2020 
Blog introduction: https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

CVPR 2022 tutorial

Unconditional CIFAR10 sample generation

https://proceedings.neurips.cc/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
https://cvpr2022-tutorial-diffusion-models.github.io/


DDPMs: Basic idea

• Forward process 𝑞 turns images into Gaussian noise 
• Reverse process 𝑝 turns noise into images
• Provided the increments of 𝑡 are small enough, 𝑝'(𝑥"&$|𝑥") is 

Gaussian and we can train a neural network to estimate the mean 
of 𝑥"&$ given 𝑥"

J. Ho et al. Denoising diffusion probabilistic models. NeurIPS 2020 

https://proceedings.neurips.cc/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf


DDPMs: Basic idea

J. Ho et al. Denoising diffusion probabilistic models. NeurIPS 2020 

• 𝜖!(𝑥" , 𝑡) is the predicted noise component of 
image 𝑥" given noise level 𝑡

• Network parameters 𝜃 are updated to 
reduce L2 error between actual noise 𝜖 and 
predicted noise 𝜖!(𝑥" , 𝑡)

𝑥"

https://proceedings.neurips.cc/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf


DDPMs: Basic idea

J. Ho et al. Denoising diffusion probabilistic models. NeurIPS 2020 

https://proceedings.neurips.cc/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf


Alternate viewpoint: Score-based generative modeling
• It can be shown that 𝜖' 𝑥" , 𝑡 ≈ −∇)! log 𝑞(𝑥"), where ∇)! log 𝑞(𝑥")

is the score function of the (noisy) data distribution
• To sample from the original data density 𝑞(𝑥C), we can use annealed 

Langevin dynamics, i.e., start by sampling from noise-perturbed 
versions of the data distribution and gradually reduce the amount of 
noise

https://yang-song.net/blog/2021/score/
Y. Song and S. Ermon. Generative Modeling by Estimating Gradients of the Data Distribution. NeurIPS 2019

Original density Medium noise Maximum noise

https://yang-song.net/blog/2021/score/
https://arxiv.org/pdf/1907.05600.pdf


DDPMs: Implementation 
• U-Net architectures are typically used to represent 𝜖'(𝑥" , 𝑡)
• Bells and whistles: residual blocks, self-attention 

• Time is encoded using sinusoidal positional embeddings or random Fourier features, fed into the U-Net using 
addition or adaptive normalization

Source: CVPR 2002 DM tutorial

https://cvpr2022-tutorial-diffusion-models.github.io/

