Diffusion models
Outline

• Conditional diffusion models
• Large-scale models
• Controlling and fine-tuning image generation
• Societal, ethical, and legal issues
Outline

- Conditional diffusion models
Class-conditioned DDPMs

• “We can sample with as few as 25 forward passes while maintaining FIDs comparable to BigGAN”

Abstract

We show that diffusion models can achieve image sample quality superior to the current state-of-the-art generative models. We achieve this on unconditional image synthesis by finding a better architecture through a series of ablations. For conditional image synthesis, we further improve sample quality with classifier guidance: a simple, compute-efficient method for trading off diversity for fidelity using gradients from a classifier. We achieve an FID of 2.97 on ImageNet $128 \times 128$, 4.59 on ImageNet $256 \times 256$, and 7.72 on ImageNet $512 \times 512$, and we match BigGAN-deep even with as few as 25 forward passes per sample, all while maintaining better coverage of the distribution. Finally, we find that classifier guidance combines well with upsampling diffusion models, further improving FID to 3.94 on ImageNet $256 \times 256$ and 3.85 on ImageNet $512 \times 512$. We release our code at https://github.com/openai/guided-diffusion.

Figure 1: Selected samples from our best ImageNet 512×512 model (FID 3.85)
Classifier guidance

- We can sample from the class-conditional density $p(x_t|c)$ with the help of a pre-trained classifier $p(c|x_t)$.

- Bayes rule:

  $$p(x_t|c) \propto p(c|x_t)p(x_t)$$

  $$\log p(x_t|c) = \log p(c|x_t) + \log p(x_t) + \text{const.}$$

  $$\nabla_{x_t} \log p(x_t|c) = \nabla_{x_t} \log p(c|x_t) + \nabla_{x_t} \log p(x_t)$$

  \begin{align*}
  \text{conditional score function} & & \text{obtained from classifier output} & & \text{unconditional score function (pre-trained)}
  \end{align*}

- To sample from class $c$, steer sample in the modified direction $\nabla_{x_t}[\log p(x_t) + w \log p(c|x_t)]$.
Classifier-free guidance

- Instead of training an additional classifier, get an “implicit classifier” by jointly training a conditional and unconditional diffusion model: $p(c|x_t) \propto p(x_t|c)/p(x_t)$
- Both $p(x_t|c)$ and $p(x_t)$ are represented using the same network, trained by dropping out $c$ with some probability (corresponding to the unconditional case)
- The modified score function corresponding to this implicit classifier is

$$
\nabla_{x_t} [\log p(x_t) + w \log p(c|x_t)] \\
= \nabla_{x_t} [\log p(x_t) + w(\log p(x_t|c) - \log p(x_t))] \\
= \nabla_{x_t} [(1 - w)\log p(x_t) + w \log p(x_t|c)]
$$

Sample is steered away from the unconditional distribution in the direction of the conditional one.
Figure 1: Classifier-free guidance on the malamute class for a 64x64 ImageNet diffusion model. Left to right: increasing amounts of classifier-free guidance, starting from non-guided samples on the left.

Text-guided diffusion

- Instead of a class label, $c$ can be an encoded text prompt, injected into the U-Net using cross-attention.

Conditioning information:
- text $c$, time $t$
Text-guided diffusion

- Instead of a class label, $c$ can be an encoded text prompt, injected into the U-Net using cross-attention

![Diagram of text-guided diffusion](Image source)
Text-guided diffusion

• Instead of a class label, $c$ can be an encoded text prompt, injected into the U-Net using \textit{cross-attention}

• Classifier-free guidance works the same way as before, by training both conditional and unconditional models using text dropout

• CLIP guidance: steer samples in the direction of $\nabla_x \text{CLIP}(x_t, c)$

• Note: both classifier and CLIP must be \textit{noise-aware} (trained on noised images)
Outline

• Conditional diffusion models
• Large-scale models
Latent diffusion model (basis of Stable Diffusion)

Latent diffusion model (basis of Stable Diffusion)

- Key idea: train a separate *encoder* and *decoder* to convert images to and from a lower-dimensional latent space, run conditional diffusion model in latent space

[Diagram showing the process of converting an image using an encoder and decoder to and from a latent space.]

[Link to Medium article: https://medium.com/@steinsfu/stable-diffusion-clearly-explained-ed008044e07e]
Latent diffusion model (basis of Stable Diffusion)

- Key idea: train a separate *encoder* and *decoder* to convert images to and from a lower-dimensional latent space, run conditional diffusion model in latent space

Latent diffusion model (basis of Stable Diffusion)

- Key idea: train a separate encoder and decoder to convert images to and from a lower-dimensional latent space, run conditional diffusion model in latent space

Close-up of U-Net: Conditioning information incorporated using cross-attention

Latent diffusion model (basis of Stable Diffusion)

Text-to-Image Synthesis on LAION. 1.45B Model.

- 'A street sign that reads “Latent Diffusion”'
- 'A zombie in the style of Picasso'
- 'An image of an unusual half mouse half octopus'
- 'An illustration of a slightly conscious neural network'
- 'A painting of a squirrel eating a burger'
- 'A watercolor painting of a cat that looks like an octopus'
- 'A shirt with the inscription: “I love generative models!”'
Sprouts in the shape of text “Imagen” coming out of a fairytale book.

A photo of a Shiba Inu dog with a backpack riding a bike. It is wearing sunglasses and a beach hat.

A high contrast portrait of a very happy fuzzy panda dressed as a chef in a high end kitchen making dough. There is a painting of flowers on the wall behind him.

Teddy bears swimming at the Olympics 400m Butterfly event.

A cute corgi lives in a house made out of sushi.

A cute sloth holding a small treasure chest. A bright golden glow is coming from the chest.

Google Imagen: Details

- Text encoder is a large language model (4.6B parameters) trained on text only
- Diffusion model to generate at 64x64, upsample to 256x256, then 1024x1024
  - Architecture: *efficient U-Net* (2B parameters): more parameters at lower resolutions, convolutions *after* downsampling and *before* upsampling
  - Classifier-free guidance with a *dynamic thresholding* technique, enabling good generation quality with high guidance weights
  - Training dataset: 460M image-text pairs (internally collected), 400M pairs from the LAION dataset

Google Imagen: Evaluation

- Impact of model size, implementation choices

Curves are obtained by varying guidance weight
FID evaluated on COCO dataset by sampling prompts and generating images using the same prompts

(a) Impact of encoder size.
(b) Impact of U-Net size.
(c) Impact of thresholding.
Google Imagen: Evaluation

- Human evaluation on DrawBench (set of 200 prompts)
Imagen vs. DALL-E 2 vs. GLIDE

Imagen (Ours)

DALL-E 2 [54]

GLIDE [41]

“A yellow book and a red vase”
“A black apple and a green backpack”

“We observe that GLIDE is better than DALL-E 2 in assigning the colors to the objects.”
Imagen vs. DALL-E 2 vs. GLIDE

Imagen (Ours)

DALL-E 2 [54]

GLIDE [41]

“A storefront with Text to Image written on it”
Imagen vs. DALL-E 2 vs. GLIDE

Imagen (Ours)

DALL-E 2 [54]

GLIDE [41]

“A panda making latte art”
Imagen vs. DALL-E 2 vs. GLIDE

Imagen (Ours)

DALL-E 2 [54]

GLIDE [41]

“A horse riding an astronaut”
Outline

• Conditional diffusion models
• Large-scale models
• Controlling and fine-tuning image generation
ControlNet

- Add a trainable “wrapper” around a pre-trained DM to fine-tune it for pix2pix tasks

ControlNet

ControlNet

ControlNet

ControlNet

Connecting 2D to 3D: DreamFusion

B. Poole, A. Jain, J. Barron, B. Mildenhall. DreamFusion: Text-to-3D using 2D Diffusion. arXiv 2022
Connecting 2D to 3D: DreamFusion

B. Poole, A. Jain, J. Barron, B. Mildenhall. DreamFusion: Text-to-3D using 2D Diffusion. arXiv 2022
Outline

- Conditional diffusion models
- Large-scale models
- Controlling and fine-tuning image generation
- Societal, ethical, and legal issues
Societal, ethical, and legal issues

- Closed or open?
- Safe or unsafe?
- Potential for generating DeepFakes and misinformation
- Dataset image rights
- Artists’ rights
- The nature of creativity
In the news

ARTIFICIAL INTELLIGENCE / TECH / LAW

Getty Images is suing the creators of AI art tool Stable Diffusion for scraping its content

/ Getty Images claims Stability AI ‘unlawfully’ scraped millions of images from its site. It’s a significant escalation in the developing legal battles between generative AI firms and content creators.

By JAMES VINCENT
Jan 17, 2023, 4:30 AM CST | 18 Comments / 18 New

In the news

https://www.newyorker.com/culture/infinite-scroll/is-ai-art-stealing-from-artists
In the news

Fake Trump arrest photos: How to spot an AI-generated image

This image looks realistic, but take a closer look at Trump's right arm and neck

Midjourney Bans AI Images of Chinese President Xi Jinping