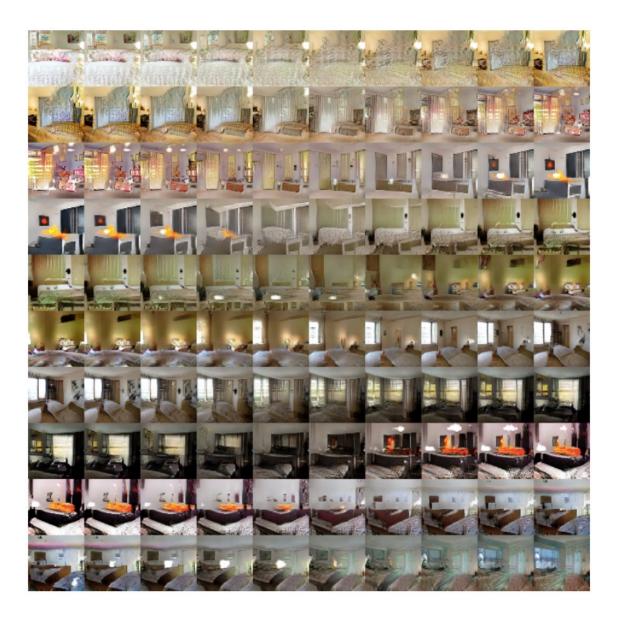
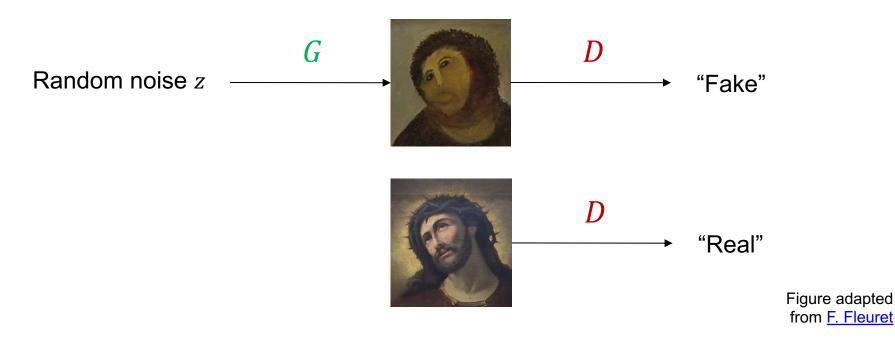
Generative adversarial networks



Slides from Lana Lazebnik

Generative adversarial networks

- Train two networks with opposing objectives:
 - Generator: learns to generate samples
 - Discriminator: learns to distinguish between generated and real samples



I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio, <u>Generative adversarial nets</u>, NIPS 2014

GAN objective

- The discriminator D(x) should output the probability that the sample x is real
 - That is, we want D(x) to be close to 1 for real data and close to 0 for fake
- Expected conditional log likelihood for real and generated data:

 $\mathbb{E}_{x \sim p_{\text{data}}} \log D(x) + \mathbb{E}_{x \sim p_{\text{gen}}} \log (1 - D(x))$

 $= \mathbb{E}_{x \sim p_{\text{data}}} \log D(x) + \mathbb{E}_{z \sim p} \log(1 - D(G(z)))$

We seed the generator with noise zdrawn from a simple distribution p(Gaussian or uniform)

$V(G,D) = \mathbb{E}_{x \sim p_{\text{data}}} \log D(x) + \mathbb{E}_{z \sim p} \log(1 - D(G(z)))$

 The discriminator wants to correctly distinguish real and fake samples:

 $D^* = \arg \max_D V(G, D)$

• The generator wants to fool the discriminator:

 $G^* = \arg \min_G V(G, D)$

• Train the generator and discriminator jointly in a *minimax* game

GAN objective: Theoretical properties

$V(G,D) = \mathbb{E}_{x \sim p_{\text{data}}} \log D(x) + \mathbb{E}_{z \sim p} \log(1 - D(G(z)))$

- Assuming unlimited capacity for generator and discriminator and unlimited training data:
 - The objective $\min_{G} \max_{D} V(G, D)$ is equivalent to Jensen-Shannon divergence between p_{data} and p_{gen} and global optimum (Nash equilibrium) is given by $p_{data} = p_{gen}$
 - If at each step, D is allowed to reach its optimum given G, and G is updated to decrease V(G, D), then p_{gen} with eventually converge to p_{data}

GAN training

$V(G,D) = \mathbb{E}_{x \sim p_{\text{data}}} \log D(x) + \mathbb{E}_{z \sim p} \log(1 - D(G(z)))$

- Alternate between
 - *Gradient ascent* on discriminator:

 $D^* = \arg \max_D V(G, D)$

• *Gradient descent* on generator (minimize log-probability of generator samples being labeled "fake"):

 $G^* = \arg \min_G V(G, D)$ = $\arg \min_G \mathbb{E}_{z \sim p} \log(1 - D(G(z)))$

• In practice, do *gradient ascent* on generator (maximize log-probability of generator samples being labeled "real"):

 $G^* = \arg \max_G \mathbb{E}_{z \sim p} \log(D(G(z)))$

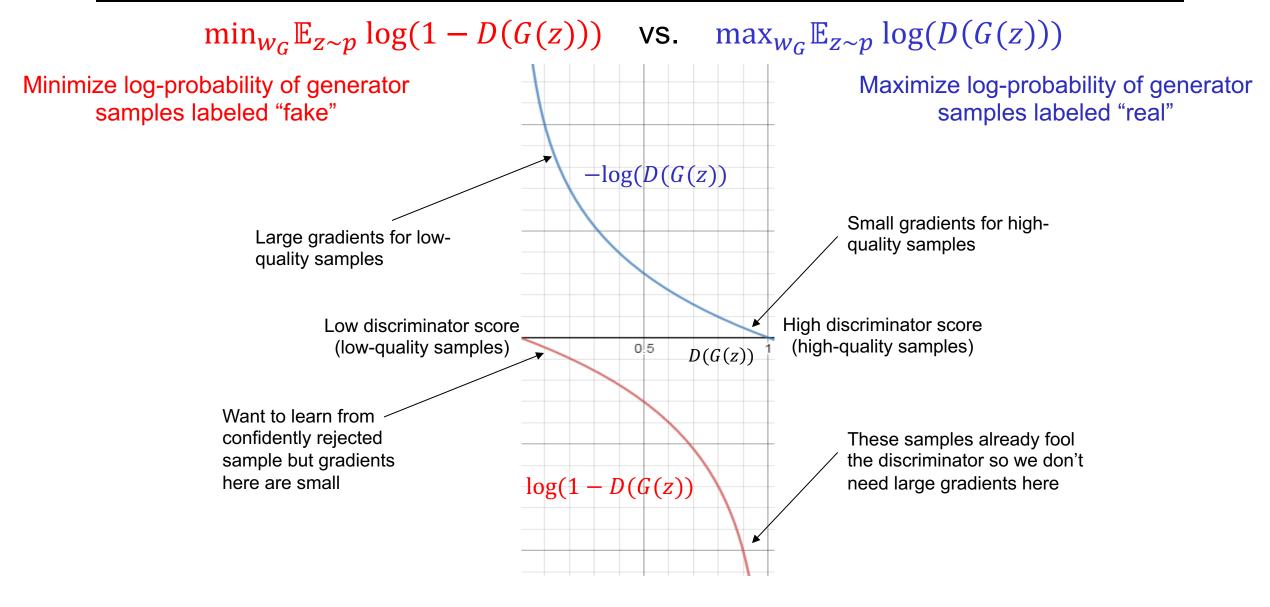
Non-saturating GAN loss (NSGAN)

 $\min_{w_G} \mathbb{E}_{z \sim p} \log(1 - D(G(z))) \quad \text{vs.} \quad \max_{w_G} \mathbb{E}_{z \sim p} \log(D(G(z)))$

Minimize log-probability of generator samples labeled "fake"

Maximize log-probability of generator samples labeled "real"

Non-saturating GAN loss (NSGAN)



NSGAN training algorithm

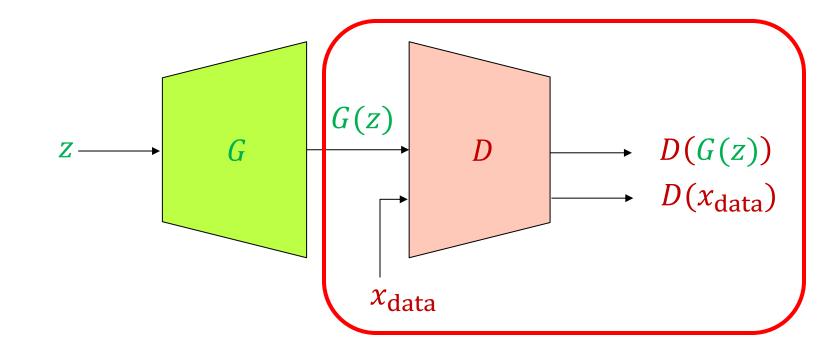
- Update discriminator:
 - Repeat for *k* steps:
 - Sample mini-batch of noise samples z_1, \dots, z_m and mini-batch of real samples x_1, \dots, x_m
 - Update parameters of *D* by stochastic gradient ascent on $\frac{1}{m} \sum_{m} [\log D(x_m) + \log(1 - D(G(z_m)))]$
- Update generator:
 - Sample mini-batch of noise samples z_1, \dots, z_m
 - Update parameters of *G* by stochastic gradient ascent on

$$\frac{1}{m}\sum_{m}\log D(G(z_m))$$

• Repeat until happy with results

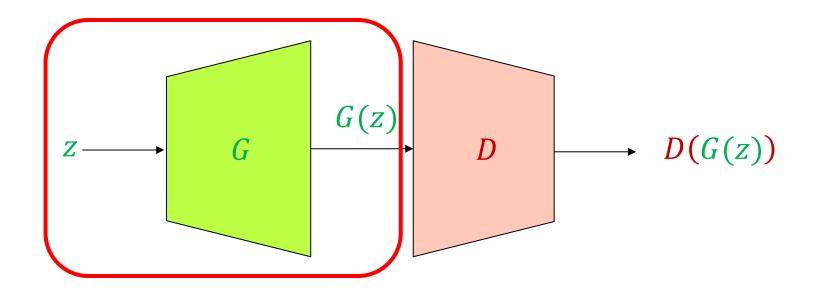
GAN: Schematic picture

- Update discriminator: push D(x_{data}) close to 1 and D(G(z)) close to 0
 - The generator is a "black box" to the discriminator



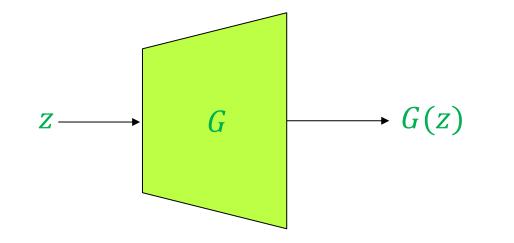
GAN: Schematic picture

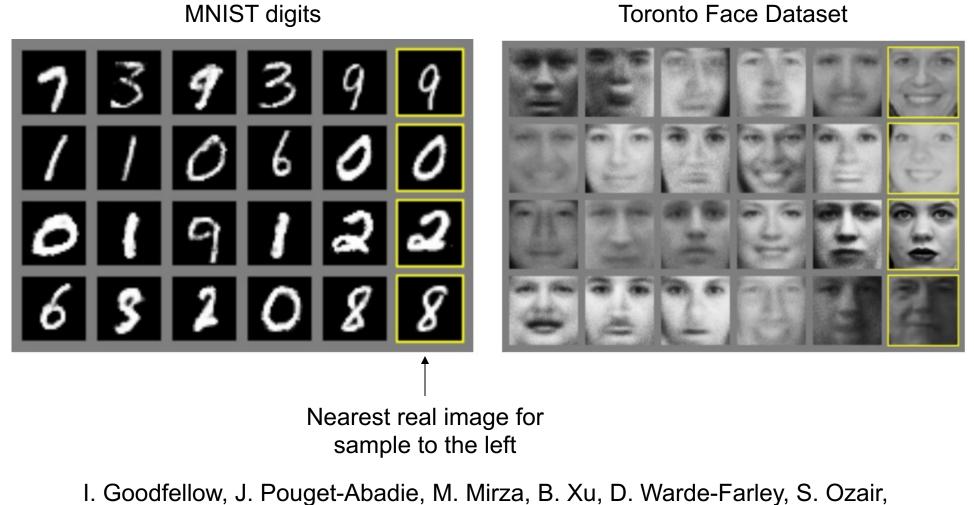
- Update generator: increase D(G(z))
 - Requires back-propagating through the composed generatordiscriminator network (i.e., the discriminator cannot be a black box)
 - The generator is exposed to real data only via the output of the discriminator *and its gradients*



GAN: Schematic picture

• Test time – the discriminator is discarded

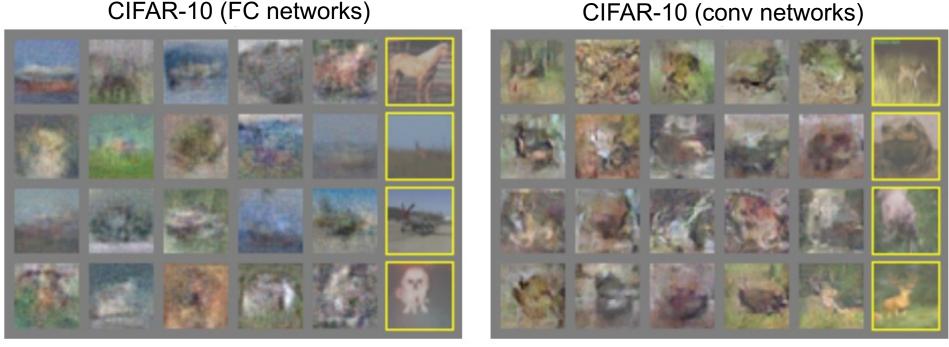




A. Courville, Y. Bengio, Generative adversarial nets, NIPS 2014

Original GAN results

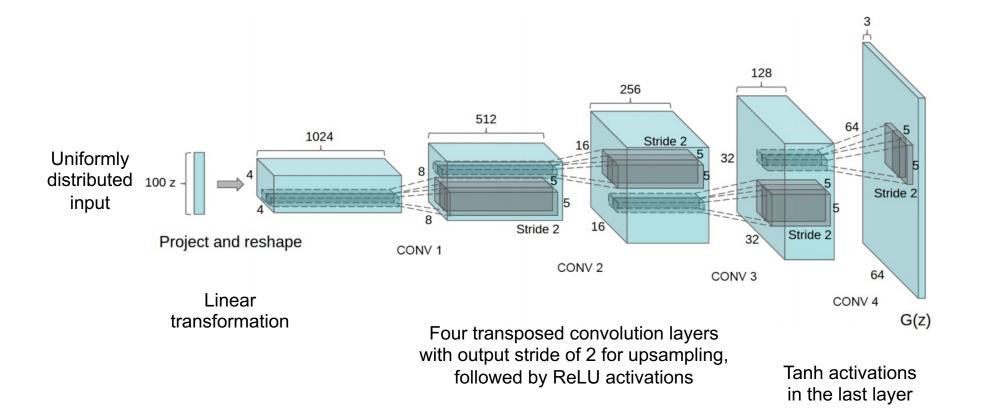
CIFAR-10 (FC networks)



I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio, Generative adversarial nets, NIPS 2014

DCGAN

• Early, influential convolutional architecture for generator



A. Radford, L. Metz, S. Chintala, <u>Unsupervised representation learning with deep</u> <u>convolutional generative adversarial networks</u>, ICLR 2016

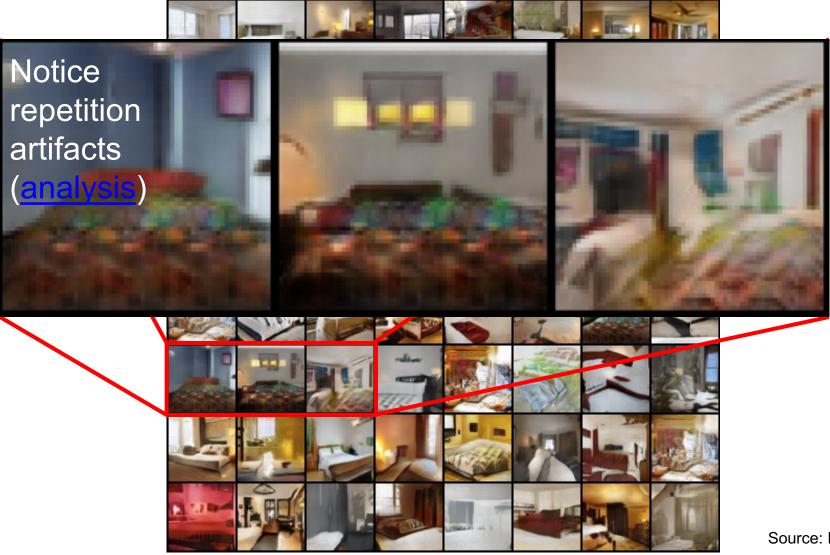
DCGAN

- Early, influential convolutional architecture for generator
- Discriminator architecture (empirically determined to give best training stability):
 - Don't use pooling, only strided convolutions
 - Use Leaky ReLU activations (sparse gradients cause problems for training)
 - Use only one FC layer before the softmax output
 - Use batch normalization after most layers (in the generator also)

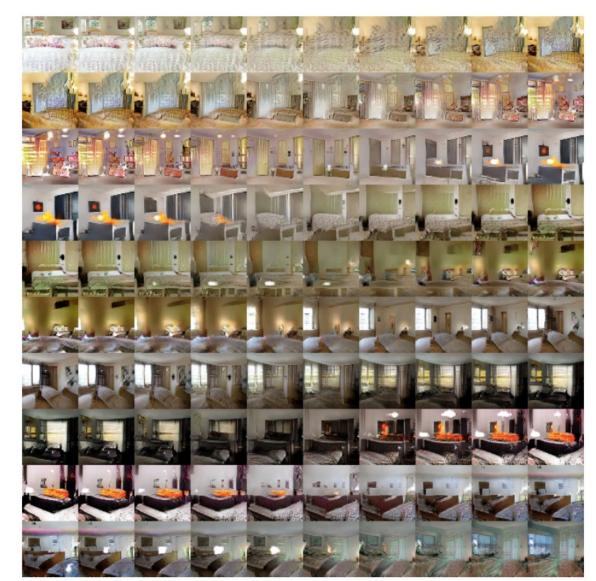
Generated bedrooms after one epoch

Generated bedrooms after five epochs

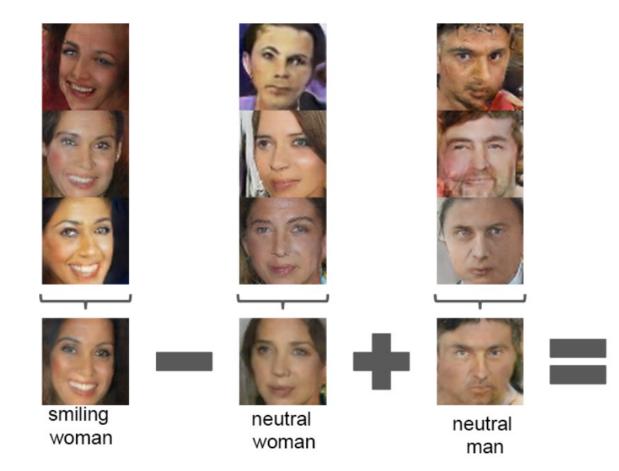
More bedrooms



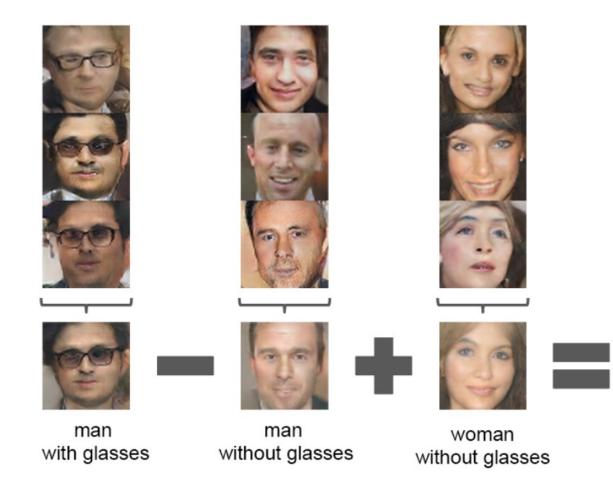
Interpolation between different points in the z space



• Vector arithmetic in the z space



• Vector arithmetic in the z space



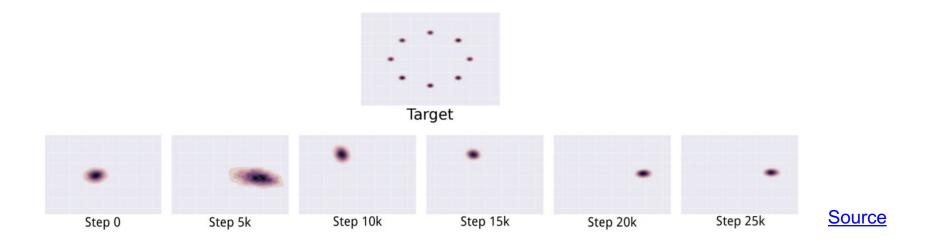
• Pose transformation by adding a "turn" vector

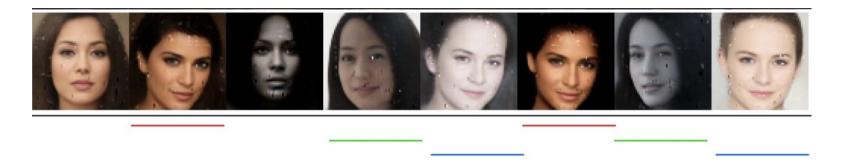
Problems with GAN training

- Stability
 - Parameters can oscillate or diverge, generator loss does not correlate with sample quality
 - Behavior very sensitive to hyperparameter selection

Problems with GAN training

- Mode collapse
 - Generator ends up modeling only a small subset of the training data





Outline

- Generative modeling tasks
- Original GAN formulation
- Alternative GAN objectives

Wasserstein GAN (WGAN)

- Motivated by Wasserstein or Earth mover's distance, which is an alternative to JS divergence for comparing distributions
 - In practice, use linear activation instead of sigmoid in the discriminator and drop the logs from the objective:

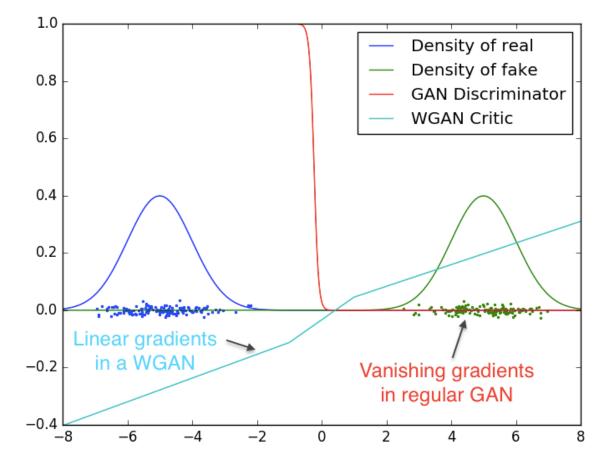
$$\min_{G} \max_{D} \left[\mathbb{E}_{x \sim p_{\text{data}}} D(x) - \mathbb{E}_{z \sim p} D(G(z)) \right]$$

- Due to theoretical considerations, important to ensure smoothness of discriminator
- This paper's suggested method is clipping weights to fixed range
 [-c, c]

M. Arjovsky, S. Chintala, L. Bottou, Wasserstein generative adversarial networks, ICML 2017

Wasserstein GAN (WGAN)

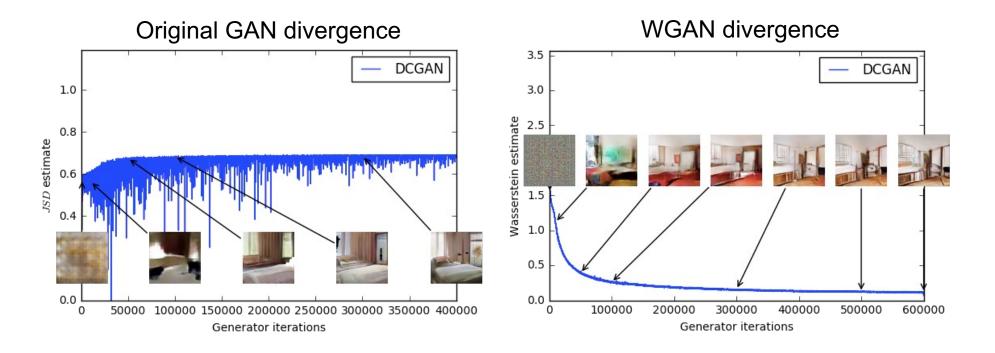
- Benefits (claimed)
 - Better gradients, more stable training



M. Arjovsky, S. Chintala, L. Bottou, Wasserstein generative adversarial networks, ICML 2017

Wasserstein GAN (WGAN)

- Benefits (claimed)
 - Better gradients, more stable training
 - Objective function value is more meaningfully related to quality of generator output



M. Arjovsky, S. Chintala, L. Bottou, Wasserstein generative adversarial networks, ICML 2017

Improved Wasserstein GAN (WGAN-GP)

- Weight clipping leads to problems with discriminator training
- Improved Wasserstein discriminator loss:

$$\mathbb{E}_{\tilde{x} \sim p_{\text{gen}}} D(\tilde{x}) - \mathbb{E}_{x \sim p_{\text{real}}} D(x)$$

$$+ \lambda \mathbb{E}_{\hat{x} \sim p_{\hat{x}}} [(\|\nabla_{\hat{x}} D(\hat{x})\|_2 - 1)^2]$$

Unit norm gradient penalty on points \hat{x} obtained by interpolating real and generated samples

I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, A. Courville, Improved training of Wasserstein GANs, NIPS 2017

Improved Wasserstein GAN: Results

I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, A. Courville, Improved training of Wasserstein GANs, NIPS 2017

Least Squares GAN (LSGAN)

- Use least squares cost for generator and discriminator
 - Equivalent to minimizing Pearson χ^2 divergence

$$L_D = \mathbb{E}_{x \sim p_{\text{data}}} (D(x) - 1)^2 + \mathbb{E}_{z \sim p} (D(G(z)))^2$$

Push discrim. response on real data close to 1 Push response on generated data close to 0

$$L_G = \mathbb{E}_{z \sim p} (D(G(z)) - 1)^2$$

Push response on generated data close to 1

X. Mao, Q. Li, H. Xie, R. Y. Lau, Z. Wang, and S. P. Smolley, <u>Least squares generative adversarial networks</u>, ICCV 2017

Least Squares GAN (LSGAN)

- Benefits (claimed)
 - Higher-quality images

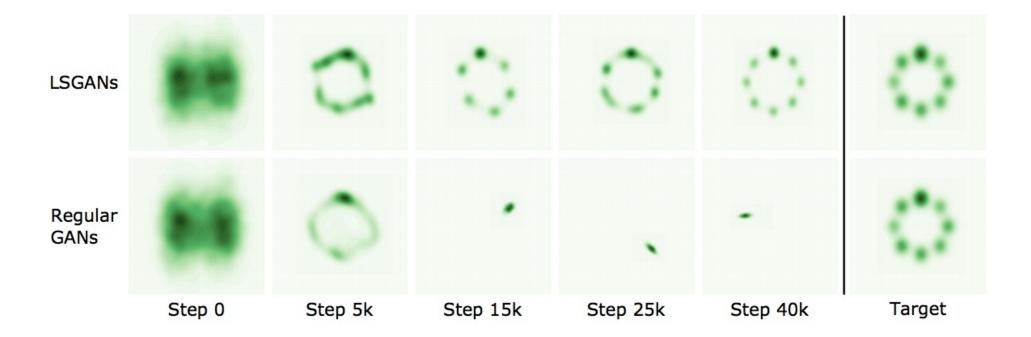
(a) Generated images (112 \times 112) by LSGANs.

(b) Generated images (112 \times 112) by DCGANs.

X. Mao, Q. Li, H. Xie, R. Y. Lau, Z. Wang, and S. P. Smolley, <u>Least squares generative adversarial networks</u>, ICCV 2017

Least Squares GAN (LSGAN)

- Benefits (claimed)
 - Higher-quality images
 - More stable and resistant to mode collapse



X. Mao, Q. Li, H. Xie, R. Y. Lau, Z. Wang, and S. P. Smolley, <u>Least squares generative adversarial networks</u>, ICCV 2017

Outline

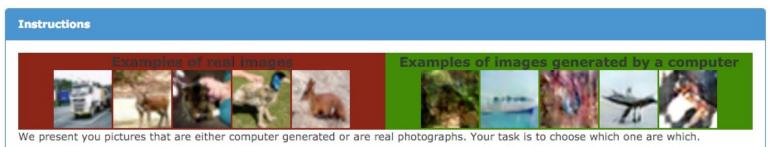
- Generative modeling tasks
- Original GAN formulations
- Alternative GAN objectives
- Evaluating GANs

How to evaluate GANs?

- Showing pictures of samples is not enough, especially for simpler datasets like MNIST, CIFAR, faces, bedrooms, etc.
- We cannot directly compute the likelihoods of highdimensional samples (real or generated), or compare their distributions
- Many GAN approaches claim mainly to improve stability, which is hard to evaluate

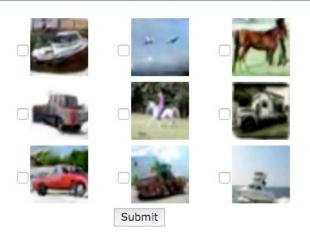
GAN evaluation: Human studies

• Example: Turing test



Images contain pictures of airplanes, automobiles, birds, cats, deer, dogs, frogs, horses, ships, and trucks. If you cannot clearly recognize what's the class of the object, then it's likely to be a generated image.

SET CHECKBOX ON IMAGES THAT LOOK LIKE GENERATED BY A COMPUTER.



T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, X. Chen, <u>Improved</u> <u>techniques for training GANs</u>, NIPS 2016

GAN evaluation: Inception score (IS)

- Key idea: generators should produce images with a variety of recognizable object classes
 - Pass generated samples x through an image classifier (InceptionNet), compute posterior class distributions P(y|x) and marginal distribution P(y)
 - Compute Inception score as

 $IS(G) = \exp[\mathbb{E}_{x \sim G} KL(P(y|x) \parallel P(y))].$

- IS should be high when:
 - Samples x contain recognizable objects, so entropy of P(y|x) is low
 - The predicted labels of samples are diverse, so the entropy of P(y) is high
 - What if a generator overfits (memorizes the training set)?
 - What if it outputs a single image per class?

T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, X. Chen, <u>Improved</u> <u>techniques for training GANs</u>, NIPS 2016

GAN evaluation: Inception score (IS)

- Disadvantages
 - A GAN that simply memorizes the training data (overfitting) or outputs a single image per class (mode dropping) could still score well
 - Is sensitive to network weights, not necessarily valid for generative models not trained on ImageNet, can be gamed (<u>Barratt & Sharma</u> 2018)

Figure 1. Sample of generated images achieving an Inception Score of 900.15. The maximum achievable Inception Score is 1000, and the highest achieved in the literature is on the order of 10.

GAN evaluation: Fréchet Inception Distance (FID)

- Key idea: fit simple distributions (Gaussians) to statistics of feature activations for real and generated data; estimate divergence parametrically
 - Pass generated samples through a network (InceptionNet), compute activations for a chosen layer
 - Estimate multivariate mean and covariance of activations, compute *Fréchet distance* to those of real data
- Advantages: correlated with visual quality of samples and human judgment, can detect mode dropping (unlike IS)
- Disadvantages: cannot detect overfitting (like IS), can be sensitive to resampling and compression (<u>Parmar et al. 2021</u>)

M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, S. Hochreiter, <u>GANs trained by</u> <u>a two time-scale update rule converge to a local Nash equilibrium</u>, NIPS 2017 • From the abstract:

"We find that most models can reach similar scores with enough hyperparameter optimization and random restarts. This suggests that improvements can arise from a higher computational budget and tuning more than fundamental algorithmic changes ... We did not find evidence that any of the tested algorithms consistently outperforms the non-saturating GAN introduced in Goodfellow et al. (2014)"

M. Lucic, K. Kurach, M. Michalski, O. Bousquet, S. Gelly, <u>Are GANs created equal?</u> <u>A large-scale study</u>, NIPS 2018